Deciphering the miRNA transcriptome of breast muscle from the embryonic to post-hatching periods in chickens.
BMC Genomics
; 22(1): 64, 2021 Jan 19.
Article
in En
| MEDLINE
| ID: mdl-33468053
BACKGROUND: miRNAs play critical roles in growth and development. Various studies of chicken muscle development have focused on identifying miRNAs that are important for embryo or adult muscle development. However, little is known about the role of miRNAs in the whole muscle development process from embryonic to post-hatching periods. Here, we present a comprehensive investigation of miRNA transcriptomes at 12-day embryo (E12), E17, and day 1 (D1), D14, D56 and D98 post-hatching stages. RESULTS: We identified 337 differentially expressed miRNAs (DE-miRNAs) during muscle development. A Short Time-Series Expression Miner analysis identified two significantly different expression profiles. Profile 4 with downregulated pattern contained 106 DE-miRNAs, while profile 21 with upregulated pattern contained 44 DE-miRNAs. The DE-miRNAs with the upregulated pattern mainly played regulatory roles in cellular turnover, such as pyrimidine metabolism, DNA replication, and cell cycle, whereas DE-miRNAs with the downregulated pattern directly or indirectly contributed to protein turnover metabolism such as glycolysis/gluconeogenesis, pyruvate metabolism and biosynthesis of amino acids. CONCLUSIONS: The main functional miRNAs during chicken muscle development differ between embryonic and post-hatching stages. miRNAs with an upregulated pattern were mainly involved in cellular turnover, while miRNAs with a downregulated pattern mainly played a regulatory role in protein turnover metabolism. These findings enrich information about the regulatory mechanisms involved in muscle development at the miRNA expression level, and provide several candidates for future studies concerning miRNA-target function in regulation of chicken muscle development.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
MicroRNAs
/
Transcriptome
Type of study:
Prognostic_studies
Limits:
Animals
Language:
En
Journal:
BMC Genomics
Journal subject:
GENETICA
Year:
2021
Document type:
Article
Affiliation country:
China
Country of publication:
United kingdom