Your browser doesn't support javascript.
loading
Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins.
Georgin, Jordana; Franco, Dison S P; Netto, Matias S; Piccilli, Daniel G A; Foletto, Edson Luiz; Dotto, Guilherme L.
Affiliation
  • Georgin J; Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
  • Franco DSP; Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil.
  • Netto MS; Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil.
  • Piccilli DGA; Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
  • Foletto EL; Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil.
  • Dotto GL; Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil. guilherme_dotto@yahoo.com.
Environ Sci Pollut Res Int ; 28(27): 36453-36463, 2021 Jul.
Article in En | MEDLINE | ID: mdl-33694109
In this work, peanut (Arachis hypogaea) skin, a by-product generated by the agricultural production of its seeds, was employed as a precursor in the preparation of an adsorbent for the 2,4-D removal in water. The skins were treated with sulfuric acid and characterized by different techniques. The adsorption was favored at acid pH = 2 with pHpzc = 6. The dosage of 0.9 g L-1 was considered ideal, obtaining satisfactory indications of removal and capacity. The kinetic curves were well represented by the general order model, with the equilibrium reached quickly in the first 30 min for all concentrations. Adsorption isotherm studies showed that the increase in temperature negatively affected the herbicide adsorption, obtaining a maximum capacity of 246.72 mg g-1, by the Langmuir isotherm at 298 K. The remarkable adsorption efficiency presented by the adsorbent can be associated with the presence of new functional groups on the adsorbent surface generated after the acid treatment. Thermodynamic parameters confirmed the exothermic nature of the adsorptive system. In the treatment of synthetic wastewater consisting of a mixture of herbicides and salts, a high removal efficiency (72%) of herbicides was obtained. Therefore, the development of an adsorbent derived from peanut (Arachis hypogaea) skin treated with sulfuric acid is an excellent alternative, generating remarkable removal results towards 2,4-D herbicide.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Herbicides Language: En Journal: Environ Sci Pollut Res Int Journal subject: SAUDE AMBIENTAL / TOXICOLOGIA Year: 2021 Document type: Article Affiliation country: Brazil Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Herbicides Language: En Journal: Environ Sci Pollut Res Int Journal subject: SAUDE AMBIENTAL / TOXICOLOGIA Year: 2021 Document type: Article Affiliation country: Brazil Country of publication: Germany