Your browser doesn't support javascript.
loading
Volume Reduction Techniques for the Classification of Independent Components of rs-fMRI Data: a Study with Convolutional Neural Networks.
Mera Jiménez, Leonel; Ochoa Gómez, John F.
Affiliation
  • Mera Jiménez L; Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia. leonel.mera@udea.edu.co.
  • Ochoa Gómez JF; Facultad de Ingeniería, Cl. 67 #53-108, Medellín, Colombia. leonel.mera@udea.edu.co.
Neuroinformatics ; 20(1): 73-90, 2022 01.
Article in En | MEDLINE | ID: mdl-33829386
In the last decade, neurosciences have had an increasing interest in resting state functional magnetic resonance imaging (rs-fMRI) as a result of its advantages, such as high spatial resolution, compared to other brain exploration techniques. To improve the technique, the elimination of artifacts through Independent Components Analysis (ICA) has been proposed, as this can separate neural signal and noise, opening possibilities for automatic classification. The main classification techniques have focused on processes based on typical machine learning. However, there are currently more robust approaches such as convolutional neural networks, which can deal with complex problems directly from the data without feature selection and even with data that does not have a simple interpretation, being limited by the amount of data necessary for training and its high computational cost. This research focused on studying four methods of volume reduction mitigating the computational cost for the training of 3 models based on convolutional neural networks. One of the reduction techniques is a novel approach that we call Reduction by Consecutive Binary Patterns (RCBP), which was shown to preserve the spatial features of the independent components. In addition, the RCBP showed networks in components associated with neuronal activity more clearly. The networks achieved accuracy above 98 % in classification, and one network was even found to be over 99 % accurate, outperforming most machine learning-based classification algorithms.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Magnetic Resonance Imaging / Neural Networks, Computer Language: En Journal: Neuroinformatics Journal subject: INFORMATICA MEDICA / NEUROLOGIA Year: 2022 Document type: Article Affiliation country: Colombia Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Magnetic Resonance Imaging / Neural Networks, Computer Language: En Journal: Neuroinformatics Journal subject: INFORMATICA MEDICA / NEUROLOGIA Year: 2022 Document type: Article Affiliation country: Colombia Country of publication: United States