Your browser doesn't support javascript.
loading
Biogenic zinc-oxide nanoparticles of Moringa oleifera leaves abrogates rotenone induced neuroendocrine toxicity by regulation of oxidative stress and acetylcholinesterase activity.
Akintunde, J K; Farai, T I; Arogundade, M R; Adeleke, J T.
Affiliation
  • Akintunde JK; Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
  • Farai TI; Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria.
  • Arogundade MR; Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria.
  • Adeleke JT; Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria.
Biochem Biophys Rep ; 26: 100999, 2021 Jul.
Article in En | MEDLINE | ID: mdl-33948501
Zinc oxide nanoparticles (ZnONPs) from plant origin were postulated to regulate complex hormonal control through the hypothalamus- pituitary-testicular axis and somatic cells due to their unique small size and effective drug delivery to target tissues. This study therefore investigates the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) from Moringa oleifera leaves on key endocrine hormones (LH, FSH and testosterone), MDA level, antioxidant enzymes (SOD and CAT), acetylcholineesterase (AChE) activity and reactive nitrogen species (NO•) level in rotenone induced male rat. The animals were divided into six groups (n = 8). Group I was orally given olive oil as vehicle; Group II received 60 mg/kg of rotenone (RTNE) only; Group III (RTNE + ZnONPs) received 60 mg/kg RTNE + 10 mg/kg ZnONPs; Group IV (RTNE + ZnCAP) received 60 mg/kg RTNE + 50 mg/kg zinc capsule; Group V (ZnONPs only) received 10 mg/kg ZnONPs only. Group VI received 50 mg/kg ZnCAP only. The experiment lasted 10 days. TEM and XRD images revealed ZnO NPs. Moreover, the presence of organic molecules in bio-reduction reactions from the FTIR spectrum showed the stabilization of the nanoparticles. Also, animals induced with rotenone exhibited impairment in the leydig cells by depleting LH, FSH, and testosterone levels with reduced AChE activity and significant (p < 0.05) alteration in cerebral enzymatic antioxidants. There was also brain increase in NO• production: marker of pro-inflammation. Nanotherapeutically, ZnONPs regulated hypothalamus-pituitary-testicular axis via modulation of cerebral NO•, FSH, LH, testosterone and AChE activity with induction of anti-oxidative enzymes.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biochem Biophys Rep Year: 2021 Document type: Article Affiliation country: Nigeria Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biochem Biophys Rep Year: 2021 Document type: Article Affiliation country: Nigeria Country of publication: Netherlands