Enhanced HCB removal using bacteria from mangrove as post-treatment after electrochemical oxidation using a laser-prepared Ti/RuO2-IrO2-TiO2 anode.
Chemosphere
; 279: 130875, 2021 Sep.
Article
in En
| MEDLINE
| ID: mdl-34134435
The environmental persistence of hexachlorobenzene (HCB) is a challenge that promotes studies for efficient treatment alternatives to minimize its environmental impact. Here, we evaluated the HCB removal by electrochemical, biological, and combined approaches. The electrochemical treatment of 4 µM HCB solutions was performed using a synthesized Ti/RuO2-IrO2-TiO2 anode, while the biological treatment using mangrove-isolated bacteria was at 24, 48, and 72 h. The HCB degradability was assessed by analyzing chemical oxygen demand (COD), microbial growth capacity in media supplemented with HCB as the only carbon source, gas chromatography, and ecotoxicity assay after treatments. The synthesized anode showed a high voltammetric charge and catalytic activity, favoring the HCB biodegradability. All bacterial isolates exhibited the ability to metabolize HCB, especially Bacillus sp. and Micrococcus luteus. The HCB degradation efficiency of the combined electrochemical-biological treatment was evidenced by a high COD removal percentage, the non-HCB detection by gas chromatography, and a decrease in ecotoxicity tested with lettuce seeds. The combination of electrochemical pretreatment with microorganism degradation was efficient to remove HCB, thereby opening up prospects for in situ studies of areas contaminated by this recalcitrant compound.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Titanium
/
Water Pollutants, Chemical
Language:
En
Journal:
Chemosphere
Year:
2021
Document type:
Article
Affiliation country:
Brazil
Country of publication:
United kingdom