Your browser doesn't support javascript.
loading
A gigabyte interpreted seismic dataset for automatic fault recognition.
An, Yu; Guo, Jiulin; Ye, Qing; Childs, Conrad; Walsh, John; Dong, Ruihai.
Affiliation
  • An Y; The Insight Centre for Data Analytics, School of Computer Science, University College Dublin, Dublin, Ireland.
  • Guo J; C&C Reservoirs, Brunel House, Reading, United Kingdom.
  • Ye Q; Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China.
  • Childs C; Fault Analysis Group, School of Earth Sciences, University College Dublin, Dublin, Ireland.
  • Walsh J; Fault Analysis Group, School of Earth Sciences, University College Dublin, Dublin, Ireland.
  • Dong R; iCRAG (Irish Centre for Research in Applied Geosciences), Ireland.
Data Brief ; 37: 107219, 2021 Aug.
Article in En | MEDLINE | ID: mdl-34189207
The lack of large-scale open-source expert-labelled seismic datasets is one of the barriers to applying today's AI techniques to automatic fault recognition tasks. The dataset present in this article consists of a large number of processed seismic images and their corresponding fault annotations. The processed seismic images, which are originally from a seismic survey called Thebe Gas Field in the Exmouth Plateau of the Carnarvan Basin on the NW shelf of Australia, are represented in Python Numpy format, which can be easily adopted by various AI models and will facilitate cooperation with researchers in the field of computer science. The corresponding fault annotations were firstly manually labelled by expert interpreters of faults from seismic data in order to investigate the structural style and associated evolution of the basin. Then the fault interpretation and seismic survey are processed and collected using Petrel software and Python programs separately. This dataset can help to train, validate, and evaluate the performance of different automatic fault recognition workflow.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Data Brief Year: 2021 Document type: Article Affiliation country: Ireland Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Data Brief Year: 2021 Document type: Article Affiliation country: Ireland Country of publication: Netherlands