Your browser doesn't support javascript.
loading
Structural characterization of two novel polysaccharides from Gastrodia elata and their effects on Akkermansia muciniphila.
Huo, Jiangyan; Lei, Min; Zhou, Yang; Zhong, Xianchun; Liu, Yameng; Hou, Jinjun; Long, Huali; Zhang, Zijia; Tian, Menghua; Xie, Cen; Wu, Wanying.
Affiliation
  • Huo J; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
  • Lei M; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
  • Zhou Y; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
  • Zhong X; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
  • Liu Y; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
  • Hou J; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
  • Long H; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
  • Zhang Z; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
  • Tian M; Zhaotong Tianma Research Institute, Zhaotong 657000, Yunnan, PR China.
  • Xie C; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
  • Wu W; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR
Int J Biol Macromol ; 186: 501-509, 2021 Sep 01.
Article in En | MEDLINE | ID: mdl-34271043
Two homogeneous polysaccharides, GEP-3 and GEP-4, were purified from Gastrodia elata, a precious traditional Chinese medicine. Their structural characteristics were obtained using HPGPC, PMP-HPLC, LC/MS, FT-IR, NMR, and SEM methods. GEP-3 was 1,4-glucan with molecular weight of 20 kDa. Interestingly, GEP-4 comprised of a backbone of →[4)-α-Glcp-(1]10→[4)-α-Glcp-(1→]5[6)-ß-Glcp-(1]11→6)-α-Glcp-(3→ and two branches of ß-Glcp and p-hydroxybenzyl alcohol citrate, with repeating p-hydroxybenzyl alcohol attached to the backbone chain at O-6 position of →4,6)-α-Glcp-(1→ and O-1 position of →3,6)-α-Glcp-(1→. GEP-4 is a novel polysaccharide obtained and characterized for the first time. Bioactivity test indicated that both of them significantly promote the growth of Akkermansia muciniphila (Akk. muciniphila). Furthermore, GEP-3 and GEP-4 promoted the growth of Akk. muciniphila from high-fat diet (HFD) fecal microbiota. These results indicated that GEP-3 and GEP-4 were potential Akk. muciniphila growth promoters.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polysaccharides / Plant Extracts / Gastrodia Type of study: Prognostic_studies Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2021 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polysaccharides / Plant Extracts / Gastrodia Type of study: Prognostic_studies Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2021 Document type: Article Country of publication: Netherlands