Your browser doesn't support javascript.
loading
Establishment and verification of anthropogenic volatile organic compound emission inventory in a typical coal resource-based city.
Niu, Yueyuan; Yan, Yulong; Li, Jing; Liu, Peng; Liu, Zhuocheng; Hu, Dongmei; Peng, Lin; Wu, Jing.
Affiliation
  • Niu Y; Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
  • Yan Y; Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
  • Li J; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, USA.
  • Liu P; Ecological Environmental Protection Service Center of Shanxi Province, Shanxi, 030009, China.
  • Liu Z; Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
  • Hu D; Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
  • Peng L; Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
  • Wu J; Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China. Electronic address: wujing@ncepu.edu.cn.
Environ Pollut ; 288: 117794, 2021 Nov 01.
Article in En | MEDLINE | ID: mdl-34329059
A few studies on volatile organic compound (VOC) emission inventories in coal resource-based cities have been reported, and previous emission inventories lacked verification. Herein, using Yangquan as a case study, emission factor (EF) method and "(tracer ratio) TR - positive matrix factorization (PMF)" combined method based on atmospheric data were used to establish and verify the VOC emission inventory in coal resource-based cities, respectively. The total VOC emissions in Yangquan were 9283.2 t [-40.0%, 62.1%] in 2018, with industrial processes being the major contributors. Alkanes (35.8%), aromatics (25.0%), and alkenes (19.8%) were the main compounds in the emission inventory. The verification results for both species emission and source structure were in agreement, indicating the accuracy of VOC emission inventory based on EF method to a certain extent. However, for some species (ethane, propane, benzene, and acetylene), the EF method indicated emissions lower than those obtained from the TR results. Furthermore, the summer-time emission contribution from fossil fuel combustion indicated by the EF method (23.4%) was lower than that obtained from the PMF results (38.4%). Overall, these discrepancies could be attributed to the absence of a coal gangue source in the EF method. The verification results determined the accuracy of the VOC emission inventory and identified existing problems in the estimation of the VOC emission inventory in coal resource-based cities. In particular, not accounting for the coal gangue emissions may result in an underestimation of VOC emissions in coal resource-based cities. Thus, coal gangue emissions should be considered in future research.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ozone / Air Pollutants / Volatile Organic Compounds Type of study: Prognostic_studies Country/Region as subject: Asia Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2021 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ozone / Air Pollutants / Volatile Organic Compounds Type of study: Prognostic_studies Country/Region as subject: Asia Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2021 Document type: Article Affiliation country: China Country of publication: United kingdom