Your browser doesn't support javascript.
loading
X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability.
Benedet, Lucas; Nilsson, Matheus S; Silva, Sérgio Henrique G; Pelegrino, Marcelo H P; Mancini, Marcelo; Menezes, Michele D DE; Guilherme, Luiz Roberto G; Curi, Nilton.
Affiliation
  • Benedet L; Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, 37200-900 Lavras, MG, Brazil.
  • Nilsson MS; Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, 37200-900 Lavras, MG, Brazil.
  • Silva SHG; Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, 37200-900 Lavras, MG, Brazil.
  • Pelegrino MHP; Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, 37200-900 Lavras, MG, Brazil.
  • Mancini M; Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, 37200-900 Lavras, MG, Brazil.
  • Menezes MD; Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, 37200-900 Lavras, MG, Brazil.
  • Guilherme LRG; Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, 37200-900 Lavras, MG, Brazil.
  • Curi N; Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, 37200-900 Lavras, MG, Brazil.
An Acad Bras Cienc ; 93(4): e20200646, 2021.
Article in En | MEDLINE | ID: mdl-34550165
Portable X-ray fluorescence (pXRF) spectrometry offers valuable information for prediction models of soil fertility attributes spatial variation, although this approach is yet scarce in tropical regions. This study aims to predict and build spatial variability maps of soil pH, remaining phosphorus (P-Rem), soil organic matter (SOM) and sum of bases (SB) using pXRF results through stepwise multiple linear regression (SMLR) and Random Forest (RF) in a highly variable tropical area. Composite samples from soil A horizon were collected at 90 points throughout the campus of the Federal University of Lavras, Minas Gerais, Brazil, for pH, P-Rem, SOM, SB and pXRF analyses. RF predictions showed the highest accuracies, especially for P-Rem and SB (R² values of 0.66 and 0.55, respectively). Attributes that showed higher R² in punctual predictions also exhibited higher R² in spatial predictions. Data obtained from pXRF in tandem with RF can be used to assist prediction models for soil fertility attributes, consequently enabling the digital mapping of such attributes and helping to improve the knowledge about the spatial variability of such attributes in soils of tropical climate. This technique can therefore assist in the identification and orientation of adequate management practices in tropical agricultural practices.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil / Soil Pollutants Type of study: Prognostic_studies Language: En Journal: An Acad Bras Cienc Year: 2021 Document type: Article Affiliation country: Brazil Country of publication: Brazil

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil / Soil Pollutants Type of study: Prognostic_studies Language: En Journal: An Acad Bras Cienc Year: 2021 Document type: Article Affiliation country: Brazil Country of publication: Brazil