Your browser doesn't support javascript.
loading
A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability.
Martinez, Angel Antonio Gonzalez; Nääs, Irenilza de Alencar; de Carvalho-Curi, Thayla Morandi Ridolfi; Abe, Jair Minoro; da Silva Lima, Nilsa Duarte.
Affiliation
  • Martinez AAG; Graduate Program in Production Engineering, Universidade Paulista, R. Dr. Bacelar 1212, São Paulo 04026-002, Brazil.
  • Nääs IA; Graduate Program in Production Engineering, Universidade Paulista, R. Dr. Bacelar 1212, São Paulo 04026-002, Brazil.
  • de Carvalho-Curi TMR; Independent Researcher, Campinas 13100-650, Brazil.
  • Abe JM; Graduate Program in Production Engineering, Universidade Paulista, R. Dr. Bacelar 1212, São Paulo 04026-002, Brazil.
  • da Silva Lima ND; Graduate Program in Production Engineering, Universidade Paulista, R. Dr. Bacelar 1212, São Paulo 04026-002, Brazil.
Animals (Basel) ; 11(10)2021 Sep 24.
Article in En | MEDLINE | ID: mdl-34679810
The proper combination of environment and flock-based variables plays a critical role in broiler production. However, the housing environment control is mainly focused on temperature monitoring during the broiler growth process. The present study developed a novel predictive model to predict the broiler (Gallus gallus domesticus) rearing conditions' suitability using a data-mining process centered on flock-based and environmental variables. Data were recorded inside four commercial controlled environment broiler houses. The data analysis was conducted in three steps. First, we performed an exploratory and descriptive analysis of the environmental data. In the second step, we labeled the target variable that led to a specific broiler-rearing scenario depending on the age of the birds, the environmental dry-bulb temperature and relative humidity, the ammonia concentration, and the ventilation rate. The output (final rearing condition) was discretized into four categories ('Excellent', 'Good', 'Moderate', and 'Inappropriate'). In the third step, we used the dataset to develop tree models using the data-mining process. The random-tree model only presented accuracy for predicting the 'Excellent' and 'Moderate' rearing conditions. The decision-tree model had high accuracy and indicated that broiler age, relative humidity, and ammonia concentration play a critical role in proper rearing conditions. Using a large amount of data allows the data-mining approach to building up 'if-then' rules that indicate suitable environmental control decision-making by broiler farmers.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Animals (Basel) Year: 2021 Document type: Article Affiliation country: Brazil Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Animals (Basel) Year: 2021 Document type: Article Affiliation country: Brazil Country of publication: Switzerland