Your browser doesn't support javascript.
loading
Design of a Low-Power Embedded System Based on a SoC-FPGA and the Honeybee Search Algorithm for Real-Time Video Tracking.
Soubervielle-Montalvo, Carlos; Perez-Cham, Oscar E; Puente, Cesar; Gonzalez-Galvan, Emilio J; Olague, Gustavo; Aguirre-Salado, Carlos A; Cuevas-Tello, Juan C; Ontanon-Garcia, Luis J.
Affiliation
  • Soubervielle-Montalvo C; Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Dr. Manuel Nava No. 8, Zona Universitaria Poniente, San Luis Potosí 78290, San Luis Potosí, Mexico.
  • Perez-Cham OE; Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Dr. Manuel Nava No. 8, Zona Universitaria Poniente, San Luis Potosí 78290, San Luis Potosí, Mexico.
  • Puente C; Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Dr. Manuel Nava No. 8, Zona Universitaria Poniente, San Luis Potosí 78290, San Luis Potosí, Mexico.
  • Gonzalez-Galvan EJ; Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Dr. Manuel Nava No. 8, Zona Universitaria Poniente, San Luis Potosí 78290, San Luis Potosí, Mexico.
  • Olague G; Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico.
  • Aguirre-Salado CA; Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Dr. Manuel Nava No. 8, Zona Universitaria Poniente, San Luis Potosí 78290, San Luis Potosí, Mexico.
  • Cuevas-Tello JC; Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Dr. Manuel Nava No. 8, Zona Universitaria Poniente, San Luis Potosí 78290, San Luis Potosí, Mexico.
  • Ontanon-Garcia LJ; Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí (UASLP), Carretera Salinas-Santo Domingo No. 200, Salinas de Hidalgo 78600, San Luis Potosí, Mexico.
Sensors (Basel) ; 22(3)2022 Feb 08.
Article in En | MEDLINE | ID: mdl-35162025
Video tracking involves detecting previously designated objects of interest within a sequence of image frames. It can be applied in robotics, unmanned vehicles, and automation, among other fields of interest. Video tracking is still regarded as an open problem due to a number of obstacles that still need to be overcome, including the need for high precision and real-time results, as well as portability and low-power demands. This work presents the design, implementation and assessment of a low-power embedded system based on an SoC-FPGA platform and the honeybee search algorithm (HSA) for real-time video tracking. HSA is a meta-heuristic that combines evolutionary computing and swarm intelligence techniques. Our findings demonstrated that the combination of SoC-FPGA and HSA reduced the consumption of computational resources, allowing real-time multiprocessing without a reduction in precision, and with the advantage of lower power consumption, which enabled portability. A starker difference was observed when measuring the power consumption. The proposed SoC-FPGA system consumed about 5 Watts, whereas the CPU-GPU system required more than 200 Watts. A general recommendation obtained from this research is to use SoC-FPGA over CPU-GPU to work with meta-heuristics in computer vision applications when an embedded solution is required.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Algorithms / Software Type of study: Prognostic_studies Limits: Animals Language: En Journal: Sensors (Basel) Year: 2022 Document type: Article Affiliation country: Mexico Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Algorithms / Software Type of study: Prognostic_studies Limits: Animals Language: En Journal: Sensors (Basel) Year: 2022 Document type: Article Affiliation country: Mexico Country of publication: Switzerland