Your browser doesn't support javascript.
loading
Cupriavidus metallidurans CH34 Possesses Aromatic Catabolic Versatility and Degrades Benzene in the Presence of Mercury and Cadmium.
Alviz-Gazitua, Pablo; Durán, Roberto E; Millacura, Felipe A; Cárdenas, Franco; Rojas, Luis A; Seeger, Michael.
Affiliation
  • Alviz-Gazitua P; Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile.
  • Durán RE; Departamento de Ciencias Biológicas y Biodiversidad, Universidad de los Lagos, Osorno 5311890, Chile.
  • Millacura FA; Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile.
  • Cárdenas F; Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile.
  • Rojas LA; School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, UK.
  • Seeger M; Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile.
Microorganisms ; 10(2)2022 Feb 21.
Article in En | MEDLINE | ID: mdl-35208938
Heavy metal co-contamination in crude oil-polluted environments may inhibit microbial bioremediation of hydrocarbons. The model heavy metal-resistant bacterium Cupriavidus metallidurans CH34 possesses cadmium and mercury resistance, as well as genes related to the catabolism of hazardous BTEX aromatic hydrocarbons. The aims of this study were to analyze the aromatic catabolic potential of C. metallidurans CH34 and to determine the functionality of the predicted benzene catabolic pathway and the influence of cadmium and mercury on benzene degradation. Three chromosome-encoded bacterial multicomponent monooxygenases (BMMs) are involved in benzene catabolic pathways. Growth assessment, intermediates identification, and gene expression analysis indicate the functionality of the benzene catabolic pathway. Strain CH34 degraded benzene via phenol and 2-hydroxymuconic semialdehyde. Transcriptional analyses revealed a transition from the expression of catechol 2,3-dioxygenase (tomB) in the early exponential phase to catechol 1,2-dioxygenase (catA1 and catA2) in the late exponential phase. The minimum inhibitory concentration to Hg (II) and Cd (II) was significantly lower in the presence of benzene, demonstrating the effect of co-contamination on bacterial growth. Notably, this study showed that C. metallidurans CH34 degraded benzene in the presence of Hg (II) or Cd (II).
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Microorganisms Year: 2022 Document type: Article Affiliation country: Chile Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Microorganisms Year: 2022 Document type: Article Affiliation country: Chile Country of publication: Switzerland