Your browser doesn't support javascript.
loading
Pattern matching for high precision detection of LINE-1s in human genomes.
Lopez, Juan O; Seguel, Jaime; Chamorro, Andres; Ramos, Kenneth S.
Affiliation
  • Lopez JO; Department of Computer Science, University of Puerto Rico, Arecibo, Puerto Rico. juano.lopez@upr.edu.
  • Seguel J; Department of Computer Science and Engineering, University of Puerto Rico, Mayagüez, Puerto Rico.
  • Chamorro A; Department of Computer Science and Engineering, University of Puerto Rico, Mayagüez, Puerto Rico.
  • Ramos KS; Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, USA.
BMC Bioinformatics ; 23(1): 375, 2022 Sep 13.
Article in En | MEDLINE | ID: mdl-36100885
BACKGROUND: Long interspersed element 1 (LINE-1 or L1) retrotransposons are mobile elements that constitute 17-20% of the human genome. Strong correlations between abnormal L1 expression and several human diseases have been reported. This has motivated increasing interest in accurate quantification of the number of L1 copies present in any given biologic specimen. A main obstacle toward this aim is that L1s are relatively long DNA segments with regions of high variability, or largely present in the human genome as truncated fragments. These particularities render traditional alignment strategies, such as seed-and-extend inefficient, as the number of segments that are similar to L1s explodes exponentially. This study uses the pattern matching methodology for more accurate identification of L1s. We validate experimentally the superiority of pattern matching for L1 detection over alternative methods and discuss some of its potential applications. RESULTS: Pattern matching detected full-length L1 copies with high precision, reasonable computational time, and no prior input information. It also detected truncated and significantly altered copies of L1 with relatively high precision. The method was effectively used to annotate L1s in a target genome and to calculate copy number variation with respect to a reference genome. Crucial to the success of implementation was the selection of a small set of k-mer probes from a set of sequences presenting a stable pattern of distribution in the genome. As in seed-and-extend methods, the pattern matching algorithm sowed these k-mer probes, but instead of using heuristic extensions around the seeds, the analysis was based on distribution patterns within the genome. The desired level of precision could be adjusted, with some loss of recall. CONCLUSION: Pattern matching is more efficient than seed-and-extend methods for the detection of L1 segments whose characterization depends on a finite set of sequences with common areas of low variability. We propose that pattern matching may help establish correlations between L1 copy number and disease states associated with L1 mobilization and evolution.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genome, Human / DNA Copy Number Variations Type of study: Diagnostic_studies Limits: Humans Language: En Journal: BMC Bioinformatics Journal subject: INFORMATICA MEDICA Year: 2022 Document type: Article Affiliation country: Puerto Rico Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genome, Human / DNA Copy Number Variations Type of study: Diagnostic_studies Limits: Humans Language: En Journal: BMC Bioinformatics Journal subject: INFORMATICA MEDICA Year: 2022 Document type: Article Affiliation country: Puerto Rico Country of publication: United kingdom