Your browser doesn't support javascript.
loading
Detection and Classification of Knee Osteoarthritis.
Cueva, Joseph Humberto; Castillo, Darwin; Espinós-Morató, Héctor; Durán, David; Díaz, Patricia; Lakshminarayanan, Vasudevan.
Affiliation
  • Cueva JH; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 11-01-608, Ecuador.
  • Castillo D; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 11-01-608, Ecuador.
  • Espinós-Morató H; Instituto de Instrumentación para Imagen Molecular (i3M) Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain.
  • Durán D; Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L3G1, Canada.
  • Díaz P; Escuela de Ciencia, Ingeniería y Diseño, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain.
  • Lakshminarayanan V; Applied Data Science Lab (ADaS Lab), Facultat Informàtica, Multimedia i Telecomunicacions, Universitat Oberta de Catalunya, Avenida Tibidabo 39-43, 08035 Barcelona, Spain.
Diagnostics (Basel) ; 12(10)2022 Sep 29.
Article in En | MEDLINE | ID: mdl-36292051
Osteoarthritis (OA) affects nearly 240 million people worldwide. Knee OA is the most common type of arthritis, especially in older adults. Physicians measure the severity of knee OA according to the Kellgren and Lawrence (KL) scale through visual inspection of X-ray or MR images. We propose a semi-automatic CADx model based on Deep Siamese convolutional neural networks and a fine-tuned ResNet-34 to simultaneously detect OA lesions in the two knees according to the KL scale. The training was done using a public dataset, whereas the validations were performed with a private dataset. Some problems of the imbalanced dataset were solved using transfer learning. The model results average of the multi-class accuracy is 61%, presenting better performance results for classifying classes KL-0, KL-3, and KL-4 than KL-1 and KL-2. The classification results were compared and validated using the classification of experienced radiologists.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies Language: En Journal: Diagnostics (Basel) Year: 2022 Document type: Article Affiliation country: Ecuador Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies Language: En Journal: Diagnostics (Basel) Year: 2022 Document type: Article Affiliation country: Ecuador Country of publication: Switzerland