Preparation of complex biological sample-compatible "turn-on"-type ratiometric fluorescent molecularly imprinted polymer microspheres via one-pot surface-initiated ATRP.
Mikrochim Acta
; 189(12): 464, 2022 11 23.
Article
in En
| MEDLINE
| ID: mdl-36424480
The efficient preparation of ratiometric fluorescent molecularly imprinted polymer (MIP) microspheres that can directly and selectively optosense a herbicide (i.e., 2,4-dichlorophenoxyacetic acid, 2,4-D) in undiluted pure milk is described. The dual fluorescent MIP microparticles were readily obtained through grafting a green 4-nitrobenzo[c][1,2,5]oxadiazole (NBD)-labeled 2,4-D-MIP layer with hydrophilic polymer brushes onto the preformed uniform "living" red CdTe quantum dot (QD)-labeled SiO2 microspheres via one-pot surface-initiated atom transfer radical polymerization (SI-ATRP) in the presence of a polyethylene glycol macro-ATRP initiator. They proved to be highly promising "turn-on"-type fluorescent chemosensors with red CdTe QD (the maximum emission wavelength λe,max around 710 nm) and green NBD (λe,max around 515 nm) as the reference fluorophore and "turn-on"-type responsive fluorophore, respectively. The sensors showed excellent photostability and reusability, high 2,4-D selectivity and sensitivity (the limit of detection = 0.12 µM), and direct visual detection ability (a fluorescent color change occurs from red to blue-green with the concentration of 2,4-D increasing from 0 to 100 µM) in pure bovine milk. The sensors were used for 2,4-D detection with high recoveries (96.0-104.0%) and accuracy (RSD ≤ 4.0%) in pure goat milk at three spiking levels of both 2,4-D and its mixtures with several analogues. This new strategy lays the foundation for efficiently developing diverse complex biological sample-compatible ratiometric fluorescent MIPs highly useful for real-world bioanalyses and diagnostics.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Cadmium Compounds
/
Quantum Dots
/
Molecular Imprinting
/
Herbicides
Language:
En
Journal:
Mikrochim Acta
Year:
2022
Document type:
Article
Affiliation country:
China
Country of publication:
Austria