Your browser doesn't support javascript.
loading
Improving fresh cheese shelf-life through hyperbaric storage at variable room temperature.
Duarte, Ricardo V; Lopes-da-Silva, José A; Gomes, Ana M; Delgadillo, Ivonne; Barba, Francisco J; Saraiva, Jorge A.
Affiliation
  • Duarte RV; Departamento de Química, LAQV-REQUIMTE, Universidade de Aveiro, Aveiro, Portugal.
  • Lopes-da-Silva JA; Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal.
  • Gomes AM; Departamento de Química, LAQV-REQUIMTE, Universidade de Aveiro, Aveiro, Portugal.
  • Delgadillo I; Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal.
  • Barba FJ; Departamento de Química, LAQV-REQUIMTE, Universidade de Aveiro, Aveiro, Portugal.
  • Saraiva JA; Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Burjassot, Spain.
J Food Sci ; 88(1): 391-402, 2023 Jan.
Article in En | MEDLINE | ID: mdl-36463414
The changes in microbiological, physiochemical, and textural properties in fresh cheeses made from either cow or goat milk were observed under hyperbaric storage (HS, 50-100 MPa) at room temperature (RT) and compared with refrigerated storage under normal atmospheric pressure for 60 days. An initial microbial growth inhibition was observed for both cheese types, as well as a considerable inactivation of all endogenous microbiota under HS/RT (75-100 MPa/RT). This contributed to a higher stability of pH and color values, especially at the higher pressure at room temperature (100 MPa/RT) throughout 60 days storage. A compression effect occurred during HS/RT, resulting in higher whey loss, reduction in moisture content, and textural changes. Such changes tended to decrease over time, to values closer to the initial ones, with hardness values at the 60th day of storage at 75/RT similar to those observed for refrigeration on the 7th day and 1.4-fold higher than those observed at 100/RT. Overall, HS/RT reduced the microbial populations load during storage (≥5 log units in some cases), with minimal effects on most of the evaluated quality parameters. These results point to a considerable shelf-life extension of HS fresh cheeses, without temperature control, pinpointing HS as a more sustainable preservation strategy than refrigeration, with great potential for industrial application. PRACTICAL APPLICATION: The results presented in this study point to increased microbial stability of fresh cheeses when stored under hyperbaric storage without temperature control, leading possibly to an increased shelf-life, of up to 60 days. This kind of new food preservation strategy may be suitable for longer transportation of foods, where energy may not be handily and widely available, while additionally contributing to increased shelf-life and safety. Also, hyperbaric storage could be applied throughout the food storage, improving shelf-life with a lower carbon footprint than refrigeration.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cheese Language: En Journal: J Food Sci Year: 2023 Document type: Article Affiliation country: Portugal Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cheese Language: En Journal: J Food Sci Year: 2023 Document type: Article Affiliation country: Portugal Country of publication: United States