Your browser doesn't support javascript.
loading
A Comparison of Deep Neural Networks for Monocular Depth Map Estimation in Natural Environments Flying at Low Altitude.
Romero-Lugo, Alexandra; Magadan-Salazar, Andrea; Fuentes-Pacheco, Jorge; Pinto-Elías, Raúl.
Affiliation
  • Romero-Lugo A; Tecnológico Nacional de México, CENIDET, Cuernavaca 62490, Morelos, Mexico.
  • Magadan-Salazar A; Tecnológico Nacional de México, CENIDET, Cuernavaca 62490, Morelos, Mexico.
  • Fuentes-Pacheco J; CONACyT-Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico.
  • Pinto-Elías R; Tecnológico Nacional de México, CENIDET, Cuernavaca 62490, Morelos, Mexico.
Sensors (Basel) ; 22(24)2022 Dec 14.
Article in En | MEDLINE | ID: mdl-36560196
Currently, the use of Unmanned Aerial Vehicles (UAVs) in natural and complex environments has been increasing, because they are appropriate and affordable solutions to support different tasks such as rescue, forestry, and agriculture by collecting and analyzing high-resolution monocular images. Autonomous navigation at low altitudes is an important area of research, as it would allow monitoring parts of the crop that are occluded by their foliage or by other plants. This task is difficult due to the large number of obstacles that might be encountered in the drone's path. The generation of high-quality depth maps is an alternative for providing real-time obstacle detection and collision avoidance for autonomous UAVs. In this paper, we present a comparative analysis of four supervised learning deep neural networks and a combination of two for monocular depth map estimation considering images captured at low altitudes in simulated natural environments. Our results show that the Boosting Monocular network is the best performing in terms of depth map accuracy because of its capability to process the same image at different scales to avoid loss of fine details.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sports / Altitude Language: En Journal: Sensors (Basel) Year: 2022 Document type: Article Affiliation country: Mexico Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sports / Altitude Language: En Journal: Sensors (Basel) Year: 2022 Document type: Article Affiliation country: Mexico Country of publication: Switzerland