Your browser doesn't support javascript.
loading
Using Wool Keratin as a Structural Biomaterial and Natural Mediator to Fabricate Biocompatible and Robust Bioelectronic Platforms.
Zhu, Shuihong; Zhou, Qifan; Yi, Jia; Xu, Yihua; Fan, Chaoyu; Lin, Changxu; Wu, Jianyang; Lin, Youhui.
Affiliation
  • Zhu S; Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China.
  • Zhou Q; Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China.
  • Yi J; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China.
  • Xu Y; Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China.
  • Fan C; Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China.
  • Lin C; Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China.
  • Wu J; Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China.
  • Lin Y; Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China.
Adv Sci (Weinh) ; 10(11): e2207400, 2023 04.
Article in En | MEDLINE | ID: mdl-36807836
The design and fabrication of biopolymer-incorporated flexible electronics have attracted immense interest in healthcare systems, degradable implants, and electronic skin. However, the application of these soft bioelectronic devices is often hampered by their intrinsic drawbacks, such as poor stability, inferior scalability, and unsatisfactory durability. Herein, for the first time, using wool keratin (WK) as a structural biomaterial and natural mediator to fabricate soft bioelectronics is presented. Both theoretical and experimental studies reveal that the unique features of WK can endow carbon nanotubes (CNTs) with excellent water dispersibility, stability, and biocompatibility. Therefore, well-dispersed and electroconductive bio-inks can be prepared via a straightforward mixing process of WK and CNTs. The as-obtained WK/CNTs inks can be directly exploited to design versatile and high-performance bioelectronics, such as flexible circuits and electrocardiogram electrodes. More impressively, WK can also be a natural mediator to connect CNTs and polyacrylamide chains to fabricate a strain sensor with enhanced mechanical and electrical properties. With conformable and soft architectures, these WK-derived sensing units can be further assembled into an integrated glove for real-time gesture recognition and dexterous robot manipulations, suggesting the great potential of the WK/CNT composites for wearable artificial intelligence.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nanotubes, Carbon / Keratins Limits: Animals Language: En Journal: Adv Sci (Weinh) Year: 2023 Document type: Article Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nanotubes, Carbon / Keratins Limits: Animals Language: En Journal: Adv Sci (Weinh) Year: 2023 Document type: Article Country of publication: Germany