Your browser doesn't support javascript.
loading
New, fast, and precise method of COVID-19 detection in nasopharyngeal and tracheal aspirate samples combining optical spectroscopy and machine learning.
Ceccon, Denny M; Amaral, Paulo Henrique R; Andrade, Lídia M; da Silva, Maria I N; Andrade, Luis A F; Moraes, Thais F S; Bagno, Flavia F; Rocha, Raissa P; de Almeida Marques, Daisymara Priscila; Ferreira, Geovane Marques; Lourenço, Alice Aparecida; Ribeiro, Ágata Lopes; Coelho-Dos-Reis, Jordana G A; da Fonseca, Flavio G; Gonzalez, J C.
Affiliation
  • Ceccon DM; Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais, 6627, Brazil.
  • Amaral PHR; Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais, 6627, Brazil.
  • Andrade LM; Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais, 6627, Brazil.
  • da Silva MIN; Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais, 6627, Brazil.
  • Andrade LAF; Centro de Tecnologia Em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Moraes TFS; Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Bagno FF; Centro de Tecnologia Em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Rocha RP; Centro de Tecnologia Em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • de Almeida Marques DP; Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Ferreira GM; Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Lourenço AA; Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Ribeiro ÁL; Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Coelho-Dos-Reis JGA; Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • da Fonseca FG; Centro de Tecnologia Em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Gonzalez JC; Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Braz J Microbiol ; 54(2): 769-777, 2023 Jun.
Article in En | MEDLINE | ID: mdl-36854899
Fast, precise, and low-cost diagnostic testing to identify persons infected with SARS-CoV-2 virus is pivotal to control the global pandemic of COVID-19 that began in late 2019. The gold standard method of diagnostic recommended is the RT-qPCR test. However, this method is not universally available, and is time-consuming and requires specialized personnel, as well as sophisticated laboratories. Currently, machine learning is a useful predictive tool for biomedical applications, being able to classify data from diverse nature. Relying on the artificial intelligence learning process, spectroscopic data from nasopharyngeal swab and tracheal aspirate samples can be used to leverage characteristic patterns and nuances in healthy and infected body fluids, which allows to identify infection regardless of symptoms or any other clinical or laboratorial tests. Hence, when new measurements are performed on samples of unknown status and the corresponding data is submitted to such an algorithm, it will be possible to predict whether the source individual is infected or not. This work presents a new methodology for rapid and precise label-free diagnosing of SARS-CoV-2 infection in clinical samples, which combines spectroscopic data acquisition and analysis via artificial intelligence algorithms. Our results show an accuracy of 85% for detection of SARS-CoV-2 in nasopharyngeal swab samples collected from asymptomatic patients or with mild symptoms, as well as an accuracy of 97% in tracheal aspirate samples collected from critically ill COVID-19 patients under mechanical ventilation. Moreover, the acquisition and processing of the information is fast, simple, and cheaper than traditional approaches, suggesting this methodology as a promising tool for biomedical diagnosis vis-à-vis the emerging and re-emerging viral SARS-CoV-2 variant threats in the future.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: COVID-19 Type of study: Diagnostic_studies / Prognostic_studies Limits: Humans Language: En Journal: Braz J Microbiol Year: 2023 Document type: Article Affiliation country: Brazil Country of publication: Brazil

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: COVID-19 Type of study: Diagnostic_studies / Prognostic_studies Limits: Humans Language: En Journal: Braz J Microbiol Year: 2023 Document type: Article Affiliation country: Brazil Country of publication: Brazil