Your browser doesn't support javascript.
loading
Genetic control underlying the flowering-drought tolerance trade-off in the Antarctic plant Colobanthus quitensis.
Galleguillos, Carolina; Acuña-Rodríguez, Ian S; Torres-Díaz, Cristian; Gundel, Pedro E; Molina-Montenegro, Marco A.
Affiliation
  • Galleguillos C; Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
  • Acuña-Rodríguez IS; Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
  • Torres-Díaz C; Instituto de Investigaciones Interdisciplinarias (I3), Universidad de Talca, Talca, Chile.
  • Gundel PE; Departamento de Ciencias Naturales, Laboratorio de Genómica y Biodiversidad (LGB), Universidad del Bío-Bío, Chillán, Chile.
  • Molina-Montenegro MA; Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
Plant Cell Environ ; 46(10): 3158-3169, 2023 10.
Article in En | MEDLINE | ID: mdl-37309267
Plants inhabiting environments with stressful conditions often exhibit a low number of flowers, which can be attributed to the energetic cost associated with reproduction. One of the most stressful environments for plants is the Antarctic continent, characterized by limited soil water availability and low temperatures. Induction of dehydrins like those from the COR gene family and auxin transcriptional response repressor genes (IAAs), which are involved in floral repression, has been described in response to water stress. Here, we investigated the relationship between the water deficit-induced stress response and the number of flowers in Colobanthus quitensis plants collected from populations along a latitudinal gradient. The expression levels of COR47 and IAA12 genes in response to water deficit were found to be associated with the number of flowers. The relationship was observed both in the field and growth chambers. Watering the plants in the growth chambers alleviated the stress and stimualted flowering, thereby eliminating the trade-off observed in the field. Our study provides a mechanistic understanding of the ecological constraints on plant reproduction along a water availability gradient. However, further experiments are needed to elucidate the primary role of water availability in regulating resource allocation to reproduction in plants inhibiting extreme environments.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plants / Drought Resistance Language: En Journal: Plant Cell Environ Journal subject: BOTANICA Year: 2023 Document type: Article Affiliation country: Chile Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plants / Drought Resistance Language: En Journal: Plant Cell Environ Journal subject: BOTANICA Year: 2023 Document type: Article Affiliation country: Chile Country of publication: United States