Exploring Automated Machine Learning for Cognitive Outcome Prediction from Multimodal Brain Imaging using STREAMLINE.
AMIA Jt Summits Transl Sci Proc
; 2023: 544-553, 2023.
Article
in En
| MEDLINE
| ID: mdl-37350896
STREAMLINE is a simple, transparent, end-to-end automated machine learning (AutoML) pipeline for easily conducting rigorous machine learning (ML) modeling and analysis. The initial version is limited to binary classification. In this work, we extend STREAMLINE through implementing multiple regression-based ML models, including linear regression, elastic net, group lasso, and L21 norm. We demonstrate the effectiveness of the regression version of STREAMLINE by applying it to the prediction of Alzheimer's disease (AD) cognitive outcomes using multimodal brain imaging data. Our empirical results demonstrate the feasibility and effectiveness of the newly expanded STREAMLINE as an AutoML pipeline for evaluating AD regression models, and for discovering multimodal imaging biomarkers.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Type of study:
Prognostic_studies
/
Risk_factors_studies
Language:
En
Journal:
AMIA Jt Summits Transl Sci Proc
Year:
2023
Document type:
Article
Country of publication:
United States