Direct Growth of Nitrogen-Doped Carbon Quantum Dots on Co9S8 Passivated on Cotton Fabric as an Efficient Photoelectrode for Water Treatment.
ACS Omega
; 8(44): 41064-41076, 2023 Nov 07.
Article
in En
| MEDLINE
| ID: mdl-37970001
Heterogeneous growth of photocatalysts on different porous substrates is a solution to avoid secondary pollution caused by composite photocatalysts themselves. However, the heterogeneous growth of composite photocatalysts with nitrogen-doped carbon quantum dots (NCQDs) inclusions-introduced during synthesis-impedes the direct growth on the substrate. To overcome this problem, NCQDs were grown on a Co9S8 (NCQDs-G@Co9S8) layer, decorated on cotton fabric. This optimal coupling mode of NCQDs and Co9S8 showed 54% degradation, compared to 33% dye degradation via NCQDs-doped Co9S8 (NCQDs-D@Co9S8). The change in the crystal structure and its lower loading on fabric results in significantly lower performance of NCQDs-D@Co9S8. Even with the combination of both surface growth and doping (NCQDs-DG@Co9S8), the performance was still limited to 42%. In addition, the optimum growth concentration of NCQDs on Co9S8 was observed for 7.5 w/w %, resulting in 92% photocatalytic activity (PCA) in 80 min. Comparing different surface states formed in NCQDs using different solvents, water-based surface states (oxygen-rich surface) are most suitable for the dye degradation. NCQDs-G@Co9S8 also offers 67% Cr-VI reduction to Cr-III, showing its suitability for both inorganic and organic compounds. Better electrode performance was related to suitable charge separation of the composite, where -OH groups mainly contribute in the photocatalytic dye degradation..
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
ACS Omega
Year:
2023
Document type:
Article
Affiliation country:
Pakistan
Country of publication:
United States