Your browser doesn't support javascript.
loading
Morphological Signal Processing for Phenotype Recognition of Human Pluripotent Stem Cells Using Machine Learning Methods.
Vedeneeva, Ekaterina; Gursky, Vitaly; Samsonova, Maria; Neganova, Irina.
Affiliation
  • Vedeneeva E; Department of Physics and Mechanics & Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia.
  • Gursky V; Laboratory of Molecular Medicine, Institute of Cytology, 194064 Saint Petersburg, Russia.
  • Samsonova M; Theoretical Department, Ioffe Institute, 194021 Saint Petersburg, Russia.
  • Neganova I; Department of Physics and Mechanics & Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia.
Biomedicines ; 11(11)2023 Nov 09.
Article in En | MEDLINE | ID: mdl-38002005
Human pluripotent stem cells have the potential for unlimited proliferation and controlled differentiation into various somatic cells, making them a unique tool for regenerative and personalized medicine. Determining the best clone selection is a challenging problem in this field and requires new sensing instruments and methods able to automatically assess the state of a growing colony ('phenotype') and make decisions about its destiny. One possible solution for such label-free, non-invasive assessment is to make phase-contrast images and/or videos of growing stem cell colonies, process the morphological parameters ('morphological portrait', or signal), link this information to the colony phenotype, and initiate an automated protocol for the colony selection. As a step in implementing this strategy, we used machine learning methods to find an effective model for classifying the human pluripotent stem cell colonies of three lines according to their morphological phenotype ('good' or 'bad'), using morphological parameters from the previously published data as predictors. We found that the model using cellular morphological parameters as predictors and artificial neural networks as the classification method produced the best average accuracy of phenotype prediction (67%). When morphological parameters of colonies were used as predictors, logistic regression was the most effective classification method (75% average accuracy). Combining the morphological parameters of cells and colonies resulted in the most effective model, with a 99% average accuracy of phenotype prediction. Random forest was the most efficient classification method for the combined data. We applied feature selection methods and showed that different morphological parameters were important for phenotype recognition via either cellular or colonial parameters. Our results indicate a necessity for retaining both cellular and colonial morphological information for predicting the phenotype and provide an optimal choice for the machine learning method. The classification models reported in this study could be used as a basis for developing and/or improving automated solutions to control the quality of human pluripotent stem cells for medical purposes.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biomedicines Year: 2023 Document type: Article Affiliation country: Russia Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biomedicines Year: 2023 Document type: Article Affiliation country: Russia Country of publication: Switzerland