Your browser doesn't support javascript.
loading
A marker weighting approach for enhancing within-family accuracy in genomic prediction.
Montesinos-López, Osval A; Crespo-Herrera, Leonardo; Xavier, Alencar; Godwa, Manje; Beyene, Yoseph; Pierre, Carolina Saint; de la Rosa-Santamaria, Roberto; Salinas-Ruiz, Josafhat; Gerard, Guillermo; Vitale, Paolo; Dreisigacker, Susanne; Lillemo, Morten; Grignola, Fernando; Sarinelli, Martin; Pozzo, Ezequiel; Quiroga, Marco; Montesinos-López, Abelardo; Crossa, José.
Affiliation
  • Montesinos-López OA; Facultad de Telemática, Universidad de Colima, Colima, Colima, 28040, Mexico.
  • Crespo-Herrera L; International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico.
  • Xavier A; Corteva Agrisciences, 8305 NW 62nd Ave, Johnston, IA 50131, USA.
  • Godwa M; Purdue University, 915W State Street, West Lafayette, IN 47907, USA.
  • Beyene Y; International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico.
  • Pierre CS; International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico.
  • de la Rosa-Santamaria R; International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico.
  • Salinas-Ruiz J; Colegio de Postgraduados Campus, Tabasco, CP 86570, Mexico.
  • Gerard G; Colegio de Postgraduados Campus Córdoba, Carretera Federal Córdoba-Veracruz km 348, Manuel León, Amatlán de los Reyes, Veracruz, CP 94953, Mexico.
  • Vitale P; International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico.
  • Dreisigacker S; International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico.
  • Lillemo M; International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico.
  • Grignola F; Department of Plant Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1433 As, Norway.
  • Sarinelli M; GDM Seed, Gibson City, IL, 60936, USA.
  • Pozzo E; GDM Seed, Gibson City, IL, 60936, USA.
  • Quiroga M; GDM, Chacabuco, Buenos Aires, B6740WAC, Argentina.
  • Montesinos-López A; GDM, San Isidro, Buenos Aires, B1642GLA, Argentina.
  • Crossa J; Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430, Guadalajara, Jalisco, Mexico.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Article in En | MEDLINE | ID: mdl-38079160
Genomic selection is revolutionizing plant breeding. However, its practical implementation is still very challenging, since predicted values do not necessarily have high correspondence to the observed phenotypic values. When the goal is to predict within-family, it is not always possible to obtain reasonable accuracies, which is of paramount importance to improve the selection process. For this reason, in this research, we propose the Adversaria-Boruta (AB) method, which combines the virtues of the adversarial validation (AV) method and the Boruta feature selection method. The AB method operates primarily by minimizing the disparity between training and testing distributions. This is accomplished by reducing the weight assigned to markers that display the most significant differences between the training and testing sets. Therefore, the AB method built a weighted genomic relationship matrix that is implemented with the genomic best linear unbiased predictor (GBLUP) model. The proposed AB method is compared using 12 real data sets with the GBLUP model that uses a nonweighted genomic relationship matrix. Our results show that the proposed AB method outperforms the GBLUP by 8.6, 19.7, and 9.8% in terms of Pearson's correlation, mean square error, and normalized root mean square error, respectively. Our results support that the proposed AB method is a useful tool to improve the prediction accuracy of a complete family, however, we encourage other investigators to evaluate the AB method to increase the empirical evidence of its potential.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polymorphism, Single Nucleotide / Models, Genetic Language: En Journal: G3 (Bethesda) Year: 2024 Document type: Article Affiliation country: Mexico Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polymorphism, Single Nucleotide / Models, Genetic Language: En Journal: G3 (Bethesda) Year: 2024 Document type: Article Affiliation country: Mexico Country of publication: United kingdom