Your browser doesn't support javascript.
loading
Results for Nonlinear Diffusion Equations with Stochastic Resetting.
Lenzi, Ervin K; Zola, Rafael S; Rosseto, Michely P; Mendes, Renio S; Ribeiro, Haroldo V; Silva, Luciano R da; Evangelista, Luiz R.
Affiliation
  • Lenzi EK; Departamento de Física, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil.
  • Zola RS; National Institute of Science and Technology for Complex Systems, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil.
  • Rosseto MP; Departamento de Física, Universidade Tecnológica Federal do Paraná, Apucarana 86812-460, PR, Brazil.
  • Mendes RS; Departamento de Física, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil.
  • Ribeiro HV; Departamento de Física, Universidade Estadual de Maringá, Maringa 87020-900, PR, Brazil.
  • Silva LRD; Departamento de Física, Universidade Estadual de Maringá, Maringa 87020-900, PR, Brazil.
  • Evangelista LR; National Institute of Science and Technology for Complex Systems, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil.
Entropy (Basel) ; 25(12)2023 Dec 12.
Article in En | MEDLINE | ID: mdl-38136527
ABSTRACT
In this study, we investigate a nonlinear diffusion process in which particles stochastically reset to their initial positions at a constant rate. The nonlinear diffusion process is modeled using the porous media equation and its extensions, which are nonlinear diffusion equations. We use analytical and numerical calculations to obtain and interpret the probability distribution of the position of the particles and the mean square displacement. These results are further compared and shown to agree with the results of numerical simulations. Our findings show that a system of this kind exhibits non-Gaussian distributions, transient anomalous diffusion (subdiffusion and superdiffusion), and stationary states that simultaneously depend on the nonlinearity and resetting rate.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Entropy (Basel) Year: 2023 Document type: Article Affiliation country: Brazil Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Entropy (Basel) Year: 2023 Document type: Article Affiliation country: Brazil Country of publication: Switzerland