Ion entropy and accurate entropy-based FDR estimation in metabolomics.
Brief Bioinform
; 25(2)2024 Jan 22.
Article
in En
| MEDLINE
| ID: mdl-38426325
ABSTRACT
Accurate metabolite annotation and false discovery rate (FDR) control remain challenging in large-scale metabolomics. Recent progress leveraging proteomics experiences and interdisciplinary inspirations has provided valuable insights. While target-decoy strategies have been introduced, generating reliable decoy libraries is difficult due to metabolite complexity. Moreover, continuous bioinformatics innovation is imperative to improve the utilization of expanding spectral resources while reducing false annotations. Here, we introduce the concept of ion entropy for metabolomics and propose two entropy-based decoy generation approaches. Assessment of public databases validates ion entropy as an effective metric to quantify ion information in massive metabolomics datasets. Our entropy-based decoy strategies outperform current representative methods in metabolomics and achieve superior FDR estimation accuracy. Analysis of 46 public datasets provides instructive recommendations for practical application.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Algorithms
/
Tandem Mass Spectrometry
Language:
En
Journal:
Brief Bioinform
Journal subject:
BIOLOGIA
/
INFORMATICA MEDICA
Year:
2024
Document type:
Article
Affiliation country:
China
Country of publication:
United kingdom