Your browser doesn't support javascript.
loading
Cyy-287, a novel pyrimidine-2,4-diamine derivative, efficiently mitigates inflammatory responses, fibrosis, and lipid synthesis in obesity-induced cardiac and hepatic dysfunction.
Ni, Jinhuan; Zhang, Xiaodan; Huang, Huijing; Ni, Zefeng; Luo, Jianchao; Zhong, Yunshan; Hui, Min; Liu, Zhiguo; Qian, Jianchang; Zhang, Qianwen.
Affiliation
  • Ni J; Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China.
  • Zhang X; Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China.
  • Huang H; Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China.
  • Ni Z; Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  • Luo J; Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China.
  • Zhong Y; Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China.
  • Hui M; Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China.
  • Liu Z; Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  • Qian J; Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China.
  • Zhang Q; Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China.
PeerJ ; 12: e17009, 2024.
Article in En | MEDLINE | ID: mdl-38436035
ABSTRACT

Background:

Inflammation and metabolic disorders are important factors in the occurrence and development of obesity complications. In this study, we investigated the protective effect and underlying mechanism of a novel pyrimidine-2,4-diamine derivative, Cyy-287, on mice fed a high-fat diet (HFD).

Methods:

The mice were randomly separated into four groups (n ≥ 7) control (regular diet), HFD, HFD with Cyy-287 (5 mg/kg), and HFD with Cyy-287 (20 mg/kg) following HFD feeding for 10 weeks. After a 10-week administration, ALT and AST enzymes, echocardiography, immunohistochemical (IHC), Western blot (WB), Masson and Sirius Red staining were used to evaluate functional and morphological changes to the heart and liver. Microsomes from the mouse liver were extracted to quantify the total amount of CYP450 enzymes after drug treatment.

Results:

Cyy-287 decreased the levels of serum glucose, LDL, TC, ALT, and AST activities in HFD-treated mice. However, Cyy-287 administration increased ejection fraction (EF) and fractional shortening (FS) index of the heart. Cyy-287 inhibited histopathological changes in the heart and liver; decreased inflammatory activity; significantly diminished p38 mitogen-activated protein kinase (MAPK), the nuclear factor-kappa B (NF-κB) axis, and sterol regulatory element-binding protein-1c (SREBP-1c); and upregulated the AMP-activated protein kinase (AMPK) pathway in HFD-treated mice. Cyy-287 restored the content of hepatic CYP450 enzymes.

Conclusion:

These findings demonstrated that Cyy-287 protected heart and liver cells from obesity-induced damage by inhibiting inflammation, fibrosis, and lipid synthesis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyrimidines / Obesity Limits: Animals Language: En Journal: PeerJ Year: 2024 Document type: Article Affiliation country: China Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyrimidines / Obesity Limits: Animals Language: En Journal: PeerJ Year: 2024 Document type: Article Affiliation country: China Country of publication: United States