Your browser doesn't support javascript.
loading
Hydrophobic nanosheet silicalite-1 zeolite for iodine and methyl iodide capture.
Zhao, Qian; Li, Xin; Chen, Guangyuan; Wang, Zeru; Tan, Chuan; Liu, Cheng; Zou, Hao; Ma, Jing; Zhu, Lin; Duan, Tao.
Affiliation
  • Zhao Q; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China; State Key Laboratory of Envir
  • Li X; China Nuclear Power Engineering Co.,Ltd, Beijing 100840, China.
  • Chen G; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China; State Key Laboratory of Envir
  • Wang Z; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China; State Key Laboratory of Envir
  • Tan C; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China; State Key Laboratory of Envir
  • Liu C; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China; State Key Laboratory of Envir
  • Zou H; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China; State Key Laboratory of Envir
  • Ma J; China Nuclear Power Engineering Co.,Ltd, Beijing 100840, China. Electronic address: majing@cnpe.cc.
  • Zhu L; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China; State Key Laboratory of Envir
  • Duan T; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China; State Key Laboratory of Envir
J Hazard Mater ; 472: 134496, 2024 Jul 05.
Article in En | MEDLINE | ID: mdl-38718508
ABSTRACT
Effective capture of radioactive iodine from nuclear fuel reprocessing is of great importance for public safety as well as the secure utility of nuclear energy. In this work, a hydrophobic nanosheet silicalite-1 (NSL-1) zeolite with an adjustable size was developed for efficient iodine (I2) and methyl iodide (CH3I) adsorption. The optimized all-silica zeolite NSL-1 exhibits an excellent I2 uptake capacity of 553 mg/g within 45 min and a CH3I uptake capacity of 262 mg/g within 1 h. Benefiting from the reduced thickness and enhanced porosity, microporous NSL-1 possesses enhanced iodine adsorption capacity and fast adsorption kinetics, which is a considerable high value among inorganic materials. Unexpectedly, the remarkable characters of high hydrophobicity, acid-resistance and anti-oxidation endow it a higher iodine uptake capacity than traditional aluminosilicate zeolites. More importantly, the high uptake selectivity toward I2 possessed by NSL-1 owing to its hydrophobic skeleton under simulated dynamic conditions. The low cost, facile and scalable synthesis of NSL-1 further highlights great prospects for applications in the nuclear industry. This work provides useful insights for designing efficient adsorbents for iodine capture.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Hazard Mater Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Hazard Mater Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Country of publication: Netherlands