Your browser doesn't support javascript.
loading
The transcription factors HNF-4α and NF-κB activate the CDO gene to promote taurine biosynthesis in the golden pompano Trachinotus ovatus (Linnaeus 1758).
Liang, Junjie; Guo, Huayang; He, Hongxi; Liu, Baosuo; Zhang, Nan; Xian, Lin; Zhu, Kecheng; Zhang, Dianchang.
Affiliation
  • Liang J; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China.
  • Guo H; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Resear
  • He H; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China.
  • Liu B; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Resear
  • Zhang N; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Resear
  • Xian L; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Resear
  • Zhu K; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Resear
  • Zhang D; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Resear
Gene ; 928: 148786, 2024 Nov 30.
Article in En | MEDLINE | ID: mdl-39047959
ABSTRACT
Cysteine dioxygenase (CDO) is a rate-limiting enzyme in taurine biosynthesis. Taurine synthesis is limited in marine fish, and most taurine is provided by their diet. Although a nutritional study indicated that the transcription of ToCDO was significantly altered by treatment with 10.5 g/kg taurine in food, the regulatory mechanism of this biosynthesis has not been fully elucidated. In the present study, we identified the sequence features of Trachinotus ovatus cysteine dioxygenase (ToCDO), which consists of 201 amino acids. It is characterized by being a member of the cupin superfamily with two conserved cupin motifs located at amino acids 82-102 and 131-145 and with a glutamate residue substituted by a cysteine in its first motif. Moreover, phylogenetic analysis revealed that the similarity of the amino acid sequences between ToCDO and other species ranged from 84.58 % to 91.54 %. Furthermore, a high-performance liquid-phase assay of the activity of recombinantly purified ToCDO protein showed that ToCDO could catalyse the oxidation of cysteine to produce cysteine sulphite. Furthermore, the core promoter region of CDO was identified as -1182-+1 bp. Mutational analysis revealed that the HNF4α and NF-κB sites significantly and actively affected the transcription of CDO. To further investigate the binding of these two loci to the CDO promoter, an electrophoretic shift assay (EMSA) was performed to verify that HNF4α-1 and NF-κB-1 interact with the binding sites of the promoter and promote CDO gene expression, respectively. Additionally, cotransfection experiments showed that HNF4α or both HNF4α and NF-κB can significantly influence CDO promoter activity, and HNF4α was the dominant factor. Thus, HNF4α and NF-κB play important roles in CDO expression and may influence taurine biosynthesis within T. ovatus by regulating CDO expression.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Taurine / NF-kappa B / Cysteine Dioxygenase / Hepatocyte Nuclear Factor 4 Limits: Animals Language: En Journal: Gene Year: 2024 Document type: Article Affiliation country: China Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Taurine / NF-kappa B / Cysteine Dioxygenase / Hepatocyte Nuclear Factor 4 Limits: Animals Language: En Journal: Gene Year: 2024 Document type: Article Affiliation country: China Country of publication: Netherlands