Your browser doesn't support javascript.
loading
Exploring the Growth Dynamics of Size-Selected Carbon Atomic Wires with In Situ UV Resonance Raman Spectroscopy.
Marabotti, Pietro; Peggiani, Sonia; Melesi, Simone; Rossi, Barbara; Gessini, Alessandro; Bassi, Andrea Li; Russo, Valeria; Casari, Carlo Spartaco.
Affiliation
  • Marabotti P; Department of Energy, Micro and Nanostructured Materials Laboratory - NanoLab, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy.
  • Peggiani S; Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489, Berlin, Germany.
  • Melesi S; Department of Energy, Micro and Nanostructured Materials Laboratory - NanoLab, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy.
  • Rossi B; Department of Energy, Micro and Nanostructured Materials Laboratory - NanoLab, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy.
  • Gessini A; Elettra Sincrotrone Trieste, S.S. 114 km 163.5 Basovizza, Trieste, 34149, Italy.
  • Bassi AL; Elettra Sincrotrone Trieste, S.S. 114 km 163.5 Basovizza, Trieste, 34149, Italy.
  • Russo V; Department of Energy, Micro and Nanostructured Materials Laboratory - NanoLab, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy.
  • Casari CS; Department of Energy, Micro and Nanostructured Materials Laboratory - NanoLab, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy.
Small ; : e2403054, 2024 Jul 28.
Article in En | MEDLINE | ID: mdl-39073266
ABSTRACT
Short carbon atomic wires, the prototypes of the lacking carbon allotrope carbyne, represent the fundamental 1D system and the first stage in carbon nanostructure growth, which still exhibits many open points regarding their growth and stability. An in situ UV resonance Raman approach is introduced for real-time monitoring of the growth of carbon atomic wires during pulsed laser ablation in liquid without perturbing the synthesis environment. Single-chain species' growth dynamics are tracked, achieving size selectivity by exploiting the peculiar optoelectronic properties of carbon wires and the tunability of synchrotron radiation. Diverse solvents are systematically explored, finding size- and solvent-dependent production rates linked to the solvent's C/H ratio and carbonization tendency. Carbon atomic wires' growth dynamics reveal a complex interplay between formation and degradation, leading to an equilibrium. Water, lacking in carbon atoms and reduced polyynes solubility, yields fewer wires with rapid saturation. Organic solvents exhibit enhanced productivity and near-linear growth, attributed to additional carbon from solvent dissociation and low relative polarity. Exploring the dynamics of the saturation regime provides new insights into advancing carbon atomic wires synthesis via PLAL. Understanding carbon atomic wires' growth dynamics can contribute to optimizing PLAL processes for nanomaterial synthesis.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Italy Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Italy Country of publication: Germany