Your browser doesn't support javascript.
loading
Electric-Field-Driven Localization of Molecular Nanowires in Wafer-Scale Nanogap Electrodes.
Wong, Han Xuan; Fischer, Felix R.
Affiliation
  • Wong HX; Department of Chemistry, University of California, Berkeley, California 94720, United States.
  • Fischer FR; Department of Chemistry, University of California, Berkeley, California 94720, United States.
Nano Lett ; 24(33): 10155-10160, 2024 Aug 21.
Article in En | MEDLINE | ID: mdl-39107308
ABSTRACT
As integrated circuits continue to scale toward the atomic limit, bottom-up processes, such as epitaxial growth, have come to feature prominently in their fabrication. At the same time, chemistry has developed highly tunable molecular semiconductors that can perform the functions of ultimately scaled circuit components. Hybrid techniques that integrate programmable structures comprising molecular components into devices however are sorely lacking. Here we demonstrate a wafer-scale process that directs the localization of a conductive polymer, Mw = 20 kg mol-1 polyaniline, from dilute solutions into 50 nm vertical nanogap device architectures using electric-field-driven self-assembly. The resulting metal-polymer-metal junctions were characterized by electron microscopy, Raman spectroscopy and transport measurements demonstrating that our technique is highly selective, assembling conductive polymers only in electrically activated nanogaps. Our results represent a step toward scalable hybrid nanoelectronics that seamlessly integrate established lithographic top-down fabrication with bottom-up synthesized molecular functional circuit components.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nano Lett Year: 2024 Document type: Article Affiliation country: United States Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nano Lett Year: 2024 Document type: Article Affiliation country: United States Country of publication: United States