Your browser doesn't support javascript.
loading
Emulsion electrospun epigallocatechin gallate-loaded silk fibroin/polycaprolactone nanofibrous membranes for enhancing guided bone regeneration.
Chen, Hong; Xu, Jiya; Dun, Zhiyue; Yang, Yi; Wang, Yueqiu; Shu, Fei; Zhang, Zhihao; Liu, Mei.
Affiliation
  • Chen H; Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China.
  • Xu J; Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China.
  • Dun Z; Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China.
  • Yang Y; Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China.
  • Wang Y; Department of Endodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China.
  • Shu F; Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China.
  • Zhang Z; Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China.
  • Liu M; Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China.
Biomed Mater ; 19(5)2024 Aug 22.
Article in En | MEDLINE | ID: mdl-39121887
ABSTRACT
Guided bone regeneration (GBR) membranes play an important role in oral bone regeneration. However, enhancing their bone regeneration potential and antibacterial properties is crucial. Herein, silk fibroin (SF)/polycaprolactone (PCL) core-shell nanofibers loaded with epigallocatechin gallate (EGCG) were prepared using emulsion electrospinning. The nanofibrous membranes were characterized via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, water contact angle (CA) measurement, mechanical properties testing, drug release kinetics, and 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) free radical scavenging assay. Mouse pre-osteoblast MC3T3-E1 cells were used to assess the biological characteristics, cytocompatibility, and osteogenic differentiation potential of the nanofibrous membrane. Additionally, the antibacterial properties againstStaphylococcus aureus (S. aureus)andEscherichia coli (E. coli)were evaluated. The nanofibers prepared by emulsion electrospinning exhibited a stable core-shell structure with a smooth and continuous surface. The tensile strength of the SF/PCL membrane loaded with EGCG was 3.88 ± 0.15 Mpa, the water CA was 50°, and the DPPH clearance rate at 24 h was 81.73% ± 0.07%. The EGCG release rate of membranes prepared by emulsion electrospinning was reduced by 12% within 72 h compared to that of membranes prepared via traditional electrospinning.In vitroexperiments indicate that the core-shell membranes loaded with EGCG demonstrated good cell compatibility and promoted adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. Furthermore, the EGCG-loaded membranes exhibited inhibitory effects onE. coliandS. aureus. These findings indicate that core-shell nanofibrous membranes encapsulated with EGCG prepared using emulsion electrospinning possess good antioxidant, osteogenic, and antibacterial properties, making them potential candidates for research in GBR materials.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteogenesis / Polyesters / Staphylococcus aureus / Bone Regeneration / Catechin / Emulsions / Escherichia coli / Nanofibers / Fibroins / Anti-Bacterial Agents Limits: Animals Language: En Journal: Biomed Mater Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteogenesis / Polyesters / Staphylococcus aureus / Bone Regeneration / Catechin / Emulsions / Escherichia coli / Nanofibers / Fibroins / Anti-Bacterial Agents Limits: Animals Language: En Journal: Biomed Mater Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Country of publication: United kingdom