Your browser doesn't support javascript.
loading
Pilot investigations into the mechanistic basis for adverse effects of glucocorticoids in dysferlinopathy.
Lloyd, Erin M; Crew, Rachael C; Haynes, Vanessa R; White, Robert B; Mark, Peter J; Jackaman, Connie; Papadimitriou, John M; Pinniger, Gavin J; Murphy, Robyn M; Watt, Matthew J; Grounds, Miranda D.
Affiliation
  • Lloyd EM; Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
  • Crew RC; Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia.
  • Haynes VR; Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
  • White RB; Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK.
  • Mark PJ; Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
  • Jackaman C; MD Education Unit, UWA Medical School, The University of Western Australia, Perth, WA, Australia.
  • Papadimitriou JM; Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
  • Pinniger GJ; Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia.
  • Murphy RM; Department of Pathology and Laboratory Medicine, UWA Medical School, The University of Western Australia, Perth, WA, Australia.
  • Watt MJ; Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
  • Grounds MD; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia.
Skelet Muscle ; 14(1): 19, 2024 Aug 09.
Article in En | MEDLINE | ID: mdl-39123261
ABSTRACT

BACKGROUND:

Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by gene mutations resulting in deficiency of the membrane-associated protein dysferlin. They manifest post-growth and are characterised by muscle wasting (primarily in the limb and limb-gridle muscles), inflammation, and replacement of myofibres with adipose tissue. The precise pathomechanism for dysferlinopathy is currently unclear; as such there are no treatments currently available. Glucocorticoids (GCs) are widely used to reduce inflammation and treat muscular dystrophies, but when administered to patients with dysferlinopathy, they have unexpected adverse effects, with accelerated loss of muscle strength.

METHODS:

To investigate the mechanistic basis for the adverse effects of GCs in dysferlinopathy, the potent GC dexamethasone (Dex) was administered for 4-5 weeks (0.5-0.75 µg/mL in drinking water) to dysferlin-deficient BLA/J and normal wild-type (WT) male mice, sampled at 5 (Study 1) or 10 months (Study 2) of age. A wide range of analyses were conducted. Metabolism- and immune-related gene expression was assessed in psoas muscles at both ages and in quadriceps at 10 months of age. For the 10-month-old mice, quadriceps and psoas muscle histology was assessed. Additionally, we investigated the impact of Dex on the predominantly slow and fast-twitch soleus and extensor digitorum longus (EDL) muscles (respectively) in terms of contractile function, myofibre-type composition, and levels of proteins related to contractile function and metabolism, plus glycogen.

RESULTS:

At both ages, many complement-related genes were highly expressed in BLA/J muscles, and WT mice were generally more responsive to Dex than BLA/J. The effects of Dex on BLA/J mice included (i) increased expression of inflammasome-related genes in muscles (at 5 months) and (ii) exacerbated histopathology of quadriceps and psoas muscles at 10 months. A novel observation was pronounced staining for glycogen in many myofibres of the damaged quadriceps muscles, with large pale vacuolated myofibres, suggesting possible myofibre death by oncosis.

CONCLUSION:

These pilot studies provide a new focus for further investigation into the adverse effects of GCs on dysferlinopathic muscles.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dexamethasone / Muscle, Skeletal / Muscular Dystrophies, Limb-Girdle / Dysferlin / Glucocorticoids Limits: Animals Language: En Journal: Skelet Muscle Year: 2024 Document type: Article Affiliation country: Australia Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dexamethasone / Muscle, Skeletal / Muscular Dystrophies, Limb-Girdle / Dysferlin / Glucocorticoids Limits: Animals Language: En Journal: Skelet Muscle Year: 2024 Document type: Article Affiliation country: Australia Country of publication: United kingdom