Effect of Guar Gum Content on the Mechanical Properties of Laterite Soil for Subgrade Soil Application.
Polymers (Basel)
; 16(15)2024 Aug 02.
Article
in En
| MEDLINE
| ID: mdl-39125228
ABSTRACT
Using biopolymers for soil stabilization is favorable compared to more conventional methods because they are more environmentally friendly, cost-effective, and long-lasting. This study analyzes the physical properties of guar gum and laterite soil mixes. A comprehensive engineering study of guar gum-treated soil was conducted with the help of a brief experimental program. This study examined the effects of soil-guar gum interactions on the strengthening behavior of guar gum-treated soil mixtures using a series of laboratory tests. The treated laterite soil's dry density increased marginally, while its optimum moisture content decreased as the guar gum increased. Treatment with guar gum significantly enhanced the strength of laterite soil mixtures. For laterite soil with 2% guar gum, the unsoaked CBR increased by 148% and the soaked CBR increased by 192.36%. The cohesiveness and internal friction angle increased by 93.33% and 31.52%, respectively. These results show that using guar gum dramatically improves the strength of laterite soil, offering a more environmentally friendly and sustainable alternative to traditional soil additives. Using guar gum in T8 subgrade soil requires a 1395 mm pavement depth and costs INR 3.83 crores, 1.52 times more than laterite soil. For T9 subgrade soil, the depth was 1495 mm, costing INR 4.42 crores, 1.72 times more than laterite soil. This study introduces a novel approach to soil stabilization by employing guar gum, a biopolymer, to enhance the physical and mechanical properties of laterite soil. Furthermore, this study provides a detailed cost-benefit analysis for pavement applications, revealing the financial feasibility of using guar gum despite it requiring a marginally higher initial investment.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Polymers (Basel)
Year:
2024
Document type:
Article
Affiliation country:
India
Country of publication:
Switzerland