25.71 %-Efficiency FACsPbI3 Perovskite Solar Cells Enabled by A Thiourea-based Isomer.
Angew Chem Int Ed Engl
; : e202410378, 2024 Aug 14.
Article
in En
| MEDLINE
| ID: mdl-39143026
ABSTRACT
Various isomers have been developed to regulate the morphology and reduce defects in state-of-the-art perovskite solar cells (PSCs). To insight the structure-function-effect correlations for the isomerization of thiourea derivatives on the performance of the PSCs, we developed two thiourea derivatives [(3,5-dichlorophenyl)amino]thiourea (AT) and N-(3,5-dichlorophenyl)hydrazinecarbothioamide (HB). Supported by experimental and calculated results, it was found that AT can bind with undercoordinated Pb2+ defect through synergistic interaction between N1 and C=S group with a defect formation energy of 1.818â
eV, which is much higher than that from the synergistic interaction between two -NH- groups in HB and perovskite (1.015â
eV). Moreover, the stronger interaction between AT and Pb2+ regulates the crystallization process of perovskite film to obtain a high-quality perovskite film with high crystallinity, large grain size, and low defect density. Consequently, the AT-treated FACsPbI3 device engenders an efficiency of 25.71 % (certified as 24.66 %), which is greatly higher than control (23.74 %) and HB-treated FACsPbI3 devices (25.05 %). The resultant device exhibits a remarkable stability for maintaining 91.0 % and 95.2 % of its initial efficiency after aging 2000â
h in air condition or tracking at maximum power point for 1000â
h, respectively.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Angew Chem Int Ed Engl
Year:
2024
Document type:
Article
Affiliation country:
China
Country of publication:
Germany