Your browser doesn't support javascript.
loading
GluN2A: A Promising Target for Developing Novel Antidepressants.
Wang, Gang; Qi, Wang; Liu, Qiu-Hua; Guan, Wei.
Affiliation
  • Wang G; Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People's Hospital of Zhangjiagang City, Zhangjiagang, China.
  • Qi W; Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, China.
  • Liu QH; Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People's Hospital of Zhangjiagang City, Zhangjiagang, China.
  • Guan W; Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China.
Int J Neuropsychopharmacol ; 27(9)2024 Sep 01.
Article in En | MEDLINE | ID: mdl-39185814
ABSTRACT

BACKGROUND:

Depression is a heterogeneous disorder with high morbidity and disability rates that poses serious problems regarding mental health care. It is now well established that N-methyl D-aspartate receptor (NMDAR) modulators are being increasingly explored as potential therapeutic options for treating depression, although relatively little is known about their mechanisms of action. NMDARs are glutamate-gated ion channels that are ubiquitously expressed in the central nervous system (CNS), and they have been shown to play key roles in excitatory synaptic transmission. GluN2A, the predominant Glu2N subunit of functional NMDARs in neurons, is involved in various physiological processes in the CNS and is associated with diseases such as anxiety, depression, and schizophrenia. However, the role of GluN2A in the pathophysiology of depression has not yet been elucidated.

METHODS:

We reviewed several past studies to better understand the function of GluN2A in depression. Additionally, we also summarized the pathogenesis of depression based on the regulation of GluN2A expression, particularly its interaction with neuroinflammation and neurogenesis, which has received considerable critical attention and is highly implicated in the onset of depression.

RESULTS:

These evidence suggests that GluN2A overexpression impairs structural and functional synaptic plasticity, which contributes to the development of depression. Consequently, this knowledge is vital for the development of selective antagonists targeting GluN2A subunits using pharmacological and molecular methods.

CONCLUSIONS:

Specific inhibition of the GluN2A NMDAR subunit is resistant to chronic stress-induced depressive-like behaviors, making them promising targets for the development of novel antidepressants.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptors, N-Methyl-D-Aspartate / Antidepressive Agents Limits: Animals / Humans Language: En Journal: Int J Neuropsychopharmacol Journal subject: NEUROLOGIA / PSICOFARMACOLOGIA Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptors, N-Methyl-D-Aspartate / Antidepressive Agents Limits: Animals / Humans Language: En Journal: Int J Neuropsychopharmacol Journal subject: NEUROLOGIA / PSICOFARMACOLOGIA Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom