Your browser doesn't support javascript.
loading
Effect of exogenous melatonin on growth and antioxidant system of pumpkin seedlings under waterlogging stress.
Liu, Zhenyu; Sun, Li; Liu, Zhenwei; Li, Xinzheng.
Affiliation
  • Liu Z; College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, Xinxiang, China.
  • Sun L; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, Xinxiang, China.
  • Liu Z; College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, Xinxiang, China.
  • Li X; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, Xinxiang, China.
PeerJ ; 12: e17927, 2024.
Article in En | MEDLINE | ID: mdl-39210917
ABSTRACT
Melatonin regulates defense responses in plants under environmental stress. This study aimed to explore the impact of exogenous melatonin on the phenotype and physiology of 'BM1' pumpkin seedlings subjected to waterlogging stress. Waterlogging stress was induced following foliar spraying of melatonin at various concentrations (CK, 0, 10, 100, 200, and 300 µmol·L-1). The growth parameters, malondialdehyde (MDA) content, antioxidant enzyme activity, osmoregulatory substance levels, and other physiological indicators were assessed to elucidate the physiological mechanisms underlying the role of exogenous melatonin in mitigating waterlogging stress in pumpkin seedlings. The results indicate that pumpkin seedlings exhibit waterlogging symptoms, such as leaf wilting, water loss, edge chlorosis, and fading, under waterlogging stress conditions. Various growth indicators of the seedlings, including plant height, stem diameter, root length, fresh and dry weight, and leaf chlorophyll content, were significantly reduced. Moreover, the MDA content in leaves and roots increased significantly, along with elevated activities of superoxide dismutase, catalase, peroxidase, and soluble protein contents. When different concentrations of melatonin were sprayed on the leaves post waterlogging stress treatment, pumpkin seedlings showed varying degrees of recovery, with the 100 µmol·L-1 treatment displaying the best growth status and plant morphological phenotypes. There were no significant differences compared to the control group. Seedling growth indicators, chlorophyll content, root activity, antioxidant enzyme activities, soluble protein content, and osmotic adjustment substance content all increased to varying degrees with increasing melatonin concentration, peaking at 100 µmol·L-1. Melatonin also reduced membrane damage caused by oxidative stress and alleviated osmotic imbalance. Exogenous melatonin enhanced the activities of antioxidant enzymes and systems involved in scavenging reactive oxygen species, with 100 µmol·L-1 as the optimal concentration. These findings underscore the crucial role of exogenous melatonin in alleviating waterlogging stress in pumpkins. The findings of this study offer a theoretical framework and technical assistance for cultivating waterlogging-resistant pumpkins in practical settings. Additionally, it establishes a theoretical groundwork for the molecular breeding of pumpkins with increased tolerance to waterlogging.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stress, Physiological / Cucurbita / Seedlings / Melatonin / Antioxidants Language: En Journal: PeerJ Year: 2024 Document type: Article Affiliation country: China Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stress, Physiological / Cucurbita / Seedlings / Melatonin / Antioxidants Language: En Journal: PeerJ Year: 2024 Document type: Article Affiliation country: China Country of publication: United States