Your browser doesn't support javascript.
loading
Tough and thermal insulating cellulose-based aerogel fiber via long yarn-assisted interfacial polyelectrolyte complexation spinning.
Zhu, Jintao; Zhao, Xiaoyi; Wang, Yangyang; Xu, Yingjun; Yin, Yuanyuan.
Affiliation
  • Zhu J; Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
  • Zhao X; Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
  • Wang Y; Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
  • Xu Y; Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China. Electronic address: yingjun.xu@qdu.edu.cn.
  • Yin Y; Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China. Electronic address: yyyin1024@163.com.
Carbohydr Polym ; 344: 122501, 2024 Nov 15.
Article in En | MEDLINE | ID: mdl-39218540
ABSTRACT
Cellulose-based aerogel fibers are recognized as a promising candidate for wearable thermal insulation textiles due to their high porosity, extremely low thermal conductivity, and environmental friendliness. Unfortunately, their practical application in textiles is severely limited by their brittleness. Herein, a novel "long yarn-assisted interfacial polyelectrolyte complexation (YAIPC) spinning" technique is proposed to fabricate cellulose-based aerogel fibers with a unique core-shell structure. The as-prepared core-shell aerogel fibers show excellent thermal insulation performance (34.3 mW m-1 K-1) and robust mechanical strength (∼100 MPa, 31.5 MJ m-3), providing great potential as wearable thermal insulating materials. Accordingly, our research would open a new avenue for designing and constructing wearable aerogel fibers and textiles.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Carbohydr Polym Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Carbohydr Polym Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom