Your browser doesn't support javascript.
loading
Decorating Delivery Vehicles Using Hyaluronic Acid Oligosaccharides Enables Active Targeting Toward Cancer and Minimizes Adverse Effect of Chemotherapeutics.
Jia, Weibin; Li, Runrun; Zou, Fengjuan; Li, Min; Weng, Hongjuan; Shen, Qianqian; Qi, Guozhen; Zhou, Ruipiao; Shi, Yikang; Gu, Guofeng; Wang, Fengshan; Chen, Zonggang.
Affiliation
  • Jia W; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Li R; Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, SAR, 999077, China.
  • Zou F; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Li M; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Weng H; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Shen Q; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Qi G; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Zhou R; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Shi Y; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Gu G; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Wang F; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
  • Chen Z; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
Adv Healthc Mater ; : e2402158, 2024 Sep 02.
Article in En | MEDLINE | ID: mdl-39221507
ABSTRACT
The major drawback of conventional chemotherapeutic treatment is the non-specificity or inability to ascertain and target cancerous cells directly. In this study, an active targeting strategy that is poised to carry the anticancer agents to the desired sites for therapeutic action while avoiding toxicity to normal organs is provided. The active targeting of delivery vehicles is achieved by ligand-receptor interactions, in particular the specific binding between hyaluronic acid oligosaccharides (oHAs) and CD44 receptors. This study first prepares oHAs by the size-exclusion chromatography and utilizes them to decorate chitosan (CTS) as basic materials (oHAs-CTS) for drug delivery, then fabricates oHAs-CTS into micro/nanoscale carriers to encapsulate agents for cancer chemotherapy. The oHAs-CTS micro/nanocarriers exhibit high drug encapsulation efficiency (58-87%), and the drug releases present a sustained behavior. Notably, oHAs-CTS delivery vehicles display an enhanced active targeting toward cancers and alleviate the cytotoxic effects on normal cells. Additionally, in vivo results show that drug-laden oHAs-CTS nanocarriers demonstrate a significant inhibitory effect on 4 T1 tumors without any toxicity to the major organs. Taken together, the findings highlight the potential of oHAs-CTS micro/nanospheres as delivery vehicles with enhanced active targeted capability toward cancers and minimized adverse effects of chemotherapeutic agents for cancer treatment.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Healthc Mater / Adv. healthc. mater / Advanced healthcare materials (Print) Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Healthc Mater / Adv. healthc. mater / Advanced healthcare materials (Print) Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany