Your browser doesn't support javascript.
loading
Macroscopic Self-Assembly Realized by Polymer Brush─A Thickness-Dependent Rule for Rapid Wet Adhesion.
Lin, Cuiling; Hou, Fangwei; Zhang, Qian; Zhu, Guiqiang; Cheng, Mengjiao; Shi, Feng.
Affiliation
  • Lin C; State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang, Beijing, 100029, China.
  • Hou F; State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang, Beijing, 100029, China.
  • Zhang Q; State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang, Beijing, 100029, China.
  • Zhu G; State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang, Beijing, 100029, China.
  • Cheng M; State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang, Beijing, 100029, China.
  • Shi F; State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang, Beijing, 100029, China.
Small ; : e2404526, 2024 Sep 06.
Article in En | MEDLINE | ID: mdl-39240009
ABSTRACT
Macroscopic self-assembly of µm-to-mm components (dimension from 100 µm to millimeters), is meaningful to realize the concept of "self-assembly at all scales" and to understand interfacial phenomena such as adhesion, self-healing, and adsorption. However, self-assembly at this length scale is different from molecular self-assembly due to limited collision chances and binding capacity between components. Long-time contact between components is requisite to realize µm-to-mm assembly. Even though the recent idea of adding a compliant coating to enhance the molecular binding capacity is effective for such self-assembly, a trade-off between coating thickness (several micrometers) and assembly efficiency exists. Here a new compliant coating of surface-initiated polymer brush to address the above paradox by both realizing fast assembly and reducing the coating thickness to ≈40 nm by two magnitudes is demonstrated. Millimeter-sized quartz cubes are used as components and grafted with oppositely charged polyelectrolyte brushes, enabling assembly in water by electrostatic attraction and disassembly in NaCl solutions. A rule of thickness-dependent assembly chance is obtained and understood by in situ force measurements and a multivalent theory. The polymer brush strategy pushes the thickness limit of requisite compliant coating to the nanoscale for fast µm-to-mm self-assembly and provides insights into rapid wet adhesion.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany