Moiré Exchange Effect in Twisted WSe_{2}/WS_{2} Heterobilayer.
Phys Rev Lett
; 133(8): 086501, 2024 Aug 23.
Article
in En
| MEDLINE
| ID: mdl-39241712
ABSTRACT
Moiré superlattices of layered transition metal dichalcogenides are proven to host periodic electron crystals due to strong correlation effects. These electron crystals can also be intertwined with intricate magnetic phenomena. In this Letter, we present our findings on the moiré exchange effect, resulting from the modulation of local magnetic moments by electron crystals within well-aligned WSe_{2}/WS_{2} heterobilayers. Employing polarization-resolved magneto-optical spectroscopy, we unveil a high-energy excitonic resonance near one hole per moiré unit cell (v=-1), which possesses a giant g factor several times greater than the already very large g factor of the WSe_{2} A exciton in this heterostructure. Supported by continuum model calculations, these high-energy states are found to be dark excitons brightened through Umklapp scattering from the moiré mini-Brillouin zone. When the carriers form a Mott insulating state near v=-1, the Coulomb exchange between doped carriers and excitons forms an effective magnetic field with moiré periodicity. This moiré exchange effect gives rise to the observed giant g factor for the excitonic Umklapp state.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Phys Rev Lett
Year:
2024
Document type:
Article
Affiliation country:
United States
Country of publication:
United States