Synthesis of Quinoline-Based Pt-Sb Complexes with L- or Z-Type Interaction: Ligand-Controlled Redox via Anion Transfer.
Organometallics
; 43(17): 1789-1802, 2024 Sep 09.
Article
in En
| MEDLINE
| ID: mdl-39268180
ABSTRACT
A series of Pt-Sb complexes with two or three L-type quinoline side arms were prepared and studied. Two ligands, tri(8-quinolinyl)stibane (SbQ3, Q = 8-quinolinyl, 1) and 8,8'-(phenylstibanediyl)diquinoline (SbQ2Ph, 2), were used to synthesize the PtII-SbIII complexes (SbQ3)PtCl2 (3) and (SbQ2Ph)PtCl2 (4). Chloride abstraction with AgOAc provided the bis-acetate complexes (SbQ3)Pt(OAc)2 (5) and (SbQ2Ph)Pt(OAc)2 (6). To better understand the electronic effects of the Sb moiety, analogous bis-chloride complexes were oxidized to an overall formal oxidation state of +7 (i.e., Pt + Sb formal oxidation states = 7) using dichloro(phenyl)-λ3-iodane (PhICl2) and 3,4,5,6-tetrachloro-1,2-dibenzoquinone (o-chloranil) as two-electron oxidants. Depending on the oxidant, different conformational changes occur within the coordination sphere of Pt as confirmed by single-crystal X-ray diffraction and NMR spectroscopy. In addition, the nature of Pt-Sb interactions was evaluated via molecular and localized orbital calculations.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Organometallics
Year:
2024
Document type:
Article
Affiliation country:
United States
Country of publication:
United States