Your browser doesn't support javascript.
loading
Permethrin exposure primes neuroinflammatory stress response to drive depression-like behavior through microglial activation in a mouse model of Gulf War Illness.
Naughton, Sean X; Yang, Eun-Jeong; Iqbal, Umar; Trageser, Kyle; Charytonowicz, Daniel; Masieri, Sibilla; Estill, Molly; Wu, Henry; Raval, Urdhva; Lyu, Weiting; Wu, Qing-Li; Shen, Li; Simon, James; Sebra, Robert; Pasinetti, Giulio Maria.
Affiliation
  • Naughton SX; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Yang EJ; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Iqbal U; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Trageser K; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Charytonowicz D; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Masieri S; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Estill M; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Wu H; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Raval U; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Lyu W; Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
  • Wu QL; Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
  • Shen L; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Simon J; Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
  • Sebra R; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Pasinetti GM; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. giulio.pasinetti@mssm.edu.
J Neuroinflammation ; 21(1): 222, 2024 Sep 13.
Article in En | MEDLINE | ID: mdl-39272155
ABSTRACT
Gulf War Illness (GWI) is a chronic multisymptom disorder that affects approximately 25-32% of Gulf War veterans and is characterized by a number of symptoms such as cognitive impairment, psychiatric disturbances, chronic fatigue and gastrointestinal distress, among others. While the exact etiology of GWI is unknown, it is believed to have been caused by toxic exposures encountered during deployment in combination with other factors such as stress. In the present study we sought to evaluate the hypothesis that exposure to the toxin permethrin could prime neuroinflammatory stress response and elicit psychiatric symptoms associated with GWI. Specifically, we developed a mouse model of GWI, to evaluate the effects of chronic permethrin exposure followed by unpredictable stress. We found that subjecting mice to 14 days of chronic permethrin exposure followed by 7 days of unpredictable stress resulted in the development of depression-like behavior. This behavioral change coincided with distinct alterations in the microglia phenotype, indicating microglial activation in the hippocampus. We revealed that blocking microglial activation through Gi inhibitory DREADD receptors in microglia effectively prevented the behavioral change associated with permethrin and stress exposure. To elucidate the transcriptional networks impacted within distinct microglia populations linked to depression-like behavior in mice exposed to both permethrin and stress, we conducted a single-cell RNA sequencing analysis using 21,566 single nuclei collected from the hippocampus of mice. For bioinformatics, UniCell Deconvolve was a pre-trained, interpretable, deep learning model used to deconvolve cell type fractions and predict cell identity across spatial datasets. Our bioinformatics analysis identified significant alterations in permethrin exposure followed by stress-associated microglia population, notably pathways related to neuronal development, neuronal communication, and neuronal morphogenesis, all of which are associated with neural synaptic plasticity. Additionally, we observed permethrin exposure followed by stress-mediated changes in signal transduction, including modulation of chemical synaptic transmission, regulation of neurotransmitter receptors, and regulation of postsynaptic neurotransmitter receptor activity, a known contributor to the pathophysiology of depression in a subset of the hippocampal pyramidal neurons in CA3 subregions. Our findings tentatively suggest that permethrin may prime microglia towards a state of inflammatory activation that can be triggered by psychological stressors, resulting in depression-like behavior and alterations of neural plasticity. These findings underscore the significance of synergistic interactions between multi-causal factors associated with GWI.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Microglia / Persian Gulf Syndrome / Permethrin / Depression / Disease Models, Animal / Neuroinflammatory Diseases Limits: Animals Language: En Journal: J Neuroinflammation Journal subject: NEUROLOGIA Year: 2024 Document type: Article Affiliation country: United States Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Microglia / Persian Gulf Syndrome / Permethrin / Depression / Disease Models, Animal / Neuroinflammatory Diseases Limits: Animals Language: En Journal: J Neuroinflammation Journal subject: NEUROLOGIA Year: 2024 Document type: Article Affiliation country: United States Country of publication: United kingdom