Your browser doesn't support javascript.
loading
Synthesis and characterization of methacryl glycol chitosan as a novel functionally advanced thermogel for biomedical applications.
Lee, Young Ju; Lee, Eun Jin; Kim, Seong Eun; Shin, Heungsoo; Huh, Kang Moo.
Affiliation
  • Lee YJ; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
  • Lee EJ; Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea.
  • Kim SE; Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
  • Shin H; Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang Uni
  • Huh KM; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address: khuh@cnu.ac.kr.
Int J Biol Macromol ; : 135858, 2024 Sep 20.
Article in En | MEDLINE | ID: mdl-39307499
ABSTRACT
Thermo-responsive hydrogels (thermogels), known for their sol-gel transition capabilities, have garnered significant interest for biomedical applications over recent decades. However, conventional thermogels are hindered by intrinsic physicochemical and functional limitations that impede their broader utility. This study introduces methacryl glycol chitosan (MGC) as a novel thermogel, offering enhanced functionality and addressing these limitations. MGCs, synthesized through N-methacrylation of glycol chitosan, exhibit tunable thermogelling and photo-crosslinking behaviors. The thermo-reversible sol-gel transition of MGCs occurs within a 21-54 °C range, adjustable by polymer concentration and methacryl substitution degree. Photo-crosslinking using UV light further enhances the mechanical properties of MGC thermogels, creating thermo-irreversible, chemically crosslinked hydrogels. MGCs show no cytotoxic effects and effectively support cell encapsulation. In vivo studies demonstrate stable crosslinking with minimal UV-induced skin damage. Due to their unique thermo-sensitivity, multi-functionality, and customizable properties, MGC thermogels are promising novel biomaterials for various biomedical applications, particularly injectable tissue engineering and cell encapsulation, thus overcoming the limitations of conventional thermogels.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Country of publication: Netherlands