Your browser doesn't support javascript.
loading
Plant-derived compounds normalize platelet bioenergetics and function in hyperglycemia.
Gauer, Julia S; Ajanel, Abigail; Kaselampao, Lutale M; Candir, Isabel; MacCannell, Amanda D V; Roberts, Lee D; Campbell, Robert A; Ariëns, Robert A S.
Affiliation
  • Gauer JS; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
  • Ajanel A; Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA.
  • Kaselampao LM; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA.
  • Candir I; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
  • MacCannell ADV; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
  • Roberts LD; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
  • Campbell RA; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
  • Ariëns RAS; Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA.
Res Pract Thromb Haemost ; 8(6): 102548, 2024 Aug.
Article in En | MEDLINE | ID: mdl-39309231
ABSTRACT

Background:

Polyphenols have been shown to decrease oxidative stress and modulate glycemic response. Nevertheless, their effect on platelet bioenergetics and clot structure in diabetes and hyperglycemia is unknown.

Objectives:

To investigate the effect of polyphenols on human platelet bioenergetics and its subsequent effect on clot structure in normoglycemia vs acute hyperglycemia in vitro.

Methods:

Four polyphenols (resveratrol, hesperetin, epigallocatechin gallate [EGCG], and quercetin) were selected for initial analysis. Healthy volunteers' isolated platelets/platelet-rich plasma were treated with 5 or 25 mM glucose to represent normoglycemia and acute hyperglycemia, respectively. Platelet-derived reactive oxygen species (ROS), citrate synthase activity (mitochondrial density), mitochondrial calcium flux, and mitochondrial respiration were performed following exposure to polyphenols (20 µM, 1 hour) to determine their effects on platelet bioenergetics. Procoagulant platelets (annexin V) and fibrin fiber density (Alexa Fluor-488 fibrinogen; Invitrogen) were analyzed by laser scanning confocal microscopy, while clot porosity was determined using platelet-rich plasma following exposure to polyphenols (20 µM, 20 minutes).

Results:

Acute hyperglycemia increased ROS, mitochondrial calcium flux, maximal respiration, and procoagulant platelet number. Resveratrol, quercetin, and EGCG reduced platelet ROS in normoglycemic and acute hyperglycemic conditions. Mitochondrial density was decreased by quercetin and EGCG in normoglycemia. Resveratrol and EGCG reduced mitochondrial calcium flux in acute hyperglycemia. Resveratrol also decreased procoagulant platelet number and attenuated oxygen consumption rate in normoglycemia and acute hyperglycemia. No effect of hyperglycemia or polyphenols was observed on fibrin fiber density or clot pore size.

Conclusion:

Our results suggest polyphenols attenuate increased platelet activity stemming from hyperglycemia and may benefit thrombosis-preventative strategies in patients with diabetes.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Res Pract Thromb Haemost / Research and practice in thrombosis and haemostasis Year: 2024 Document type: Article Affiliation country: United kingdom Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Res Pract Thromb Haemost / Research and practice in thrombosis and haemostasis Year: 2024 Document type: Article Affiliation country: United kingdom Country of publication: United States