Your browser doesn't support javascript.
loading
Localized Gradual Photomediated Brightness and Lifetime Increase of Superacid-Treated Monolayer MoS2.
Tyson, Kurt H; Godfrey, James R; Fraser, James M; Knobel, Robert G.
Affiliation
  • Tyson KH; Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada.
  • Godfrey JR; Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada.
  • Fraser JM; Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada.
  • Knobel RG; Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada.
ACS Appl Mater Interfaces ; 16(39): 53186-53194, 2024 Oct 02.
Article in En | MEDLINE | ID: mdl-39312628
ABSTRACT
Monolayer semiconducting transition-metal dichalcogenides (S-TMDs) have been extensively studied as materials for next-generation optoelectronic devices due to their direct band gap and high exciton binding energy at room temperature. Under a superacid treatment of bis(trifluoromethane)sulfonimide (TFSI), sulfur-based TMDs such as MoS2 can emit strong photoluminescence (PL) with a photoluminescence quantum yield (PLQY) approaching unity. However, the magnitude of PL enhancement varies by more than 2 orders of magnitude in published reports. A major culprit behind the discrepancy is sulfur-based TMD's sensitivity to above-bandgap photostimulation. Here, we present a detailed study of how TFSI-treated MoS2 reacts to photostimulation with increasing PL occurring hours after continuous or pulsed laser exposure. The PL of TFSI-treated MoS2 is enhanced up to 74 times its initial intensity after 5 h of continuous exposure to 532 nm laser light. Photostimulation also enhances the PL of untreated MoS2 but with a much smaller enhancement. Caution should be taken when probing MoS2 PL spectra, as above-bandgap light can alter the resulting intensity and peak wavelength of the emission over time. The presence of air is verified to play a key role in the photostimulated enhancement effect. Additionally, the rise of PL intensity is mirrored by an increase in measured carrier lifetime of up to ∼400 ps, consistent with the suppression of nonradiative pathways. This work demonstrates why variations in PL intensity are observed across samples and provides an understanding of the changes in carrier lifetimes to better engineer next-generation optoelectronic devices.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Canada Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Canada Country of publication: United States