Your browser doesn't support javascript.
loading
Insights into Thermal Conductivity at the MOF-Polymer Interface.
Vo, Phuong; Haranczyk, Maciej.
Affiliation
  • Vo P; IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid ,Spain.
  • Haranczyk M; IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid ,Spain.
Article in En | MEDLINE | ID: mdl-39361376
ABSTRACT
Understanding the thermal conductivity in metal-organic framework (MOF)-polymer composites is crucial for optimizing their performance in applications involving heat transfer. In this work, several UiO66-polymer composites (where the polymer is either PEG, PVDF, PS, PIM-1, PP, or PMMA) are examined using molecular simulations. Our contribution highlights the interface's impact on thermal conductivity, observing an overall increasing trend attributable to the synergistic effect of MOF enhancing polymer thermal conductivity. Flexible polymers such as PEG and PVDF exhibit increased compatibility with the MOF, facilitating their integration with the MOF lattice. However, this integration leads to a moderated enhancement in thermal conductivity compared to polymers that remain separate from the MOF structure, such as PS or PP. This effect can be attributed to alterations in phonon transport pathways and shifts in interfacial interactions between the polymer and MOF. Specifically, the infiltration of the polymer like PEG and PVDF into the MOF disrupted the MOF's ordered network, introducing defects or barriers that hindered phonon propagation. In contrast, nonpolar and rigid polymers like PP, PMMA, PS, and PIM-1 exhibited greater improvements in thermal conductivity when combined with MOFs compared to the flexible polymers PVDF and PEG. Most notably, our analysis identifies a critical interface region within approximately 30-50 Å that profoundly influences thermal conductivity. The interface region, as indicated by the density profile and radius of gyration, is notably shorter but plays a pivotal role in modulating the thermal properties. The sensitivity of the system to these interface characteristics underscores the crucial role of this particular interface area in dictating the thermal conductivity. Our findings emphasize the sensitivity of thermal conductivity in polymer matrices to interface characteristics and highlight the critical role of a specific interface region in modulating thermal properties.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Spain Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Spain Country of publication: United States