Your browser doesn't support javascript.
loading
Selective separation of light and heavy rare earth elements from acidic mine waters by integration of chelating ion exchange and ligand impregnated resin.
Roa, Alexandra; López, Julio; Cortina, José Luis.
Affiliation
  • Roa A; Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
  • López J; Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
  • Cortina JL; Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; CETaqua, Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain. Electronic address: jose.luis.cortina@upc.edu.
Sci Total Environ ; 954: 176700, 2024 Oct 05.
Article in En | MEDLINE | ID: mdl-39370004
ABSTRACT
This study addresses the potential of sourcing Critical Raw Materials (CRMs) using Acidic Mine Waters (AMWs) as a secondary resource. AMWs, often viewed as waste, contain valuable metals like zinc and copper, as well as critical metals like magnesium and cobalt. Moreover, recent studies also reported the presence of Rare Earth Elements (REEs) at concentrations (mg/L) that make their extraction both technically and economically viable. The research focuses on a circular process to recover these metals from AMWs, specifically from the Aznalcóllar open-pit mine, which contains 216 mg/L of Al, 47 mg/L of Fe, 547 mg/L of Zn, and 18.56 mg/L of REEs. The proposed method involves pre-treating the AMW to remove Fe and Al, achieving removals of over 99.9 % and 90 %, respectively, at pH 4.5. Following this, transition metals like Zn, Cd, and Cu were removed as sulphides with a removal efficiency exceeding 99 %. This pre-treatment step reduced the concentration of competing metals in the ion-exchange process, thereby enhancing the recovery and purity of REEs. To separate heavy and light REEs, two types of resins in series were used an impregnated resin (TP272) and a chelating resin (S930), which can be regenerated using sulphuric acid (H2SO4). The final recovery of REEs as oxalates was achieved using oxalic acid and ammonia at pH 1, with further optimization of the elution process to minimize ammonia consumption and undesired precipitation of other oxalates. Finally, REE oxalates with purities exceeding 90 % were obtained. This research demonstrates a sustainable method for efficiently recovering valuable REEs from AMWs, while also addressing environmental concerns related to hazardous sludge generation.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ / Sci. total environ / Science of the total environment Year: 2024 Document type: Article Affiliation country: Spain Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ / Sci. total environ / Science of the total environment Year: 2024 Document type: Article Affiliation country: Spain Country of publication: Netherlands