Your browser doesn't support javascript.
loading
Hydrogen-Bonded Ionic Co-Crystals for Fast Solid-State Zinc Ion Storage.
Hong, Hu; Wang, Yu; Zhang, Yaqin; Han, Bing; Li, Qing; Guo, Xun; Guo, Ying; Chen, Ao; Wei, Zhiquan; Huang, Zhaodong; Zhao, Yuwei; Fan, Jun; Zhi, Chunyi.
Affiliation
  • Hong H; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
  • Wang Y; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
  • Zhang Y; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
  • Han B; Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R. China.
  • Li Q; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
  • Guo X; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
  • Guo Y; College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China.
  • Chen A; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
  • Wei Z; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
  • Huang Z; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Sha Tin, NT, Hong Kong SAR, 999077, China.
  • Zhao Y; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
  • Fan J; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
  • Zhi C; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
Adv Mater ; : e2407150, 2024 Oct 06.
Article in En | MEDLINE | ID: mdl-39370569
ABSTRACT
The development of new ionic conductors meeting the requirements of current solid-state devices is imminent but still challenging. Hydrogen-bonded ionic co-crystals (HICs) are multi-component crystals based on hydrogen bonding and Coulombic interactions. Due to the hydrogen bond network and unique features of ionic crystals, HICs have flexible skeletons. More importantly, anion vacancies on their surface can potentially help dissociate and adsorb excess anions, forming cation transport channels at grain boundaries. Here, it is demonstrated that a HIC optimized by adjusting the ratio of zinc salt and imidazole can construct grain boundary-based fast Zn2+ transport channels. The as-obtained HIC solid electrolyte possesses an unprecedentedly high ionic conductivity at room and low temperatures (≈11.2 mS cm-1 at 25 °C and ≈2.78 mS cm-1 at -40 °C) with ultra-low activation energy (≈0.12 eV), while restraining dendrite growth and exhibiting low overpotential even at a high current density (<200 mV at 5.0 mA cm-2) during Zn symmetric cell cycling. This HIC also allows solid-state Zn||covalent organic framework full cells to work at low temperatures, providing superior stability. More importantly, the HIC can even support zinc-ion hybrid supercapacitors to work, achieving extraordinary rate capability and a power density comparable to aqueous solution-based supercapacitors. This work provides a path for designing facilely prepared, low-cost, and environmentally friendly ionic conductors with extremely high ionic conductivity and excellent interface compatibility.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany