Your browser doesn't support javascript.
loading
Ultrasound-Responsive Nanocarriers Delivering siRNA and Fe3O4 Nanoparticles Reprogram Macrophages and Inhibit M2 Polarization for Enhanced NSCLC Immunotherapy.
Li, Yuanyuan; Li, Ming; Zheng, Jun; Ma, Zhen; Yu, Tingting; Zhu, Yangyang; Li, Pan; Nie, Fang.
Affiliation
  • Li Y; Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China.
  • Li M; Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China.
  • Zheng J; The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, People's Republic of China.
  • Ma Z; Peking University Third Hospital, Beijing 100191, China.
  • Yu T; Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China.
  • Zhu Y; Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China.
  • Li P; The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, People's Republic of China.
  • Nie F; Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China.
Article in En | MEDLINE | ID: mdl-39378273
ABSTRACT
Lung cancer has emerged as the second most common type of malignant tumor worldwide, and it has the highest mortality rate. The overall 5-year survival rate stands at less than 20%, which is primarily related to the limited therapeutic options and the complexity of the tumor immune microenvironment. In the tumor microenvironment, M1 macrophages are known for their tumor-killing capabilities. Although they are less numerous, they play an important role in tumor immunity. Therefore, increasing M1 macrophages' presence is considered a strategy to enhance targeted phagocytosis and antitumor efficacy in nonsmall cell lung cancer (NSCLC). This study introduces the development of folic acid (FA)-conjugated liposomal nanobubbles for precise delivery of PFH, STAT3 siRNA, and Fe3O4 to the tumor microenvironment. These encapsulated PFH liposomal nanobubbles exhibit significant visualization potential and underwent phase transition when exposed to low-intensity focused ultrasound (LIFU). The release of Fe3O4 activates the IRF5 signaling pathway, converting M2-like macrophages to M1. In addition, STAT3 siRNA effectively interrupts the JAK-STAT3 pathway, inhibiting the polarization of M2-like macrophages in tumor-associated macrophages (TAMs). This dual-action therapy facilitates T-cell activation and proliferation, thereby enhancing the immune response against NSCLC.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces / ACS appl. mater. interfaces (Online) / ACS applied materials & interfaces (Online) Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces / ACS appl. mater. interfaces (Online) / ACS applied materials & interfaces (Online) Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: United States